Abstract

Advanced biomedical diagnostic technologies fulfill an important role in improving health and well-being in society. A large number of excellent technologies have already been introduced and have given rise to the “lab-on-a-chip” paradigm. Most of these technologies, however, require additional instrumentation for interfacing and readout, so they are often confined to the laboratory and are not suitable for use in the field or in wider clinical practice. Other technologies require a light coupling element, such as a grating coupler or a fiber coupler, which complicates packaging. Here, we introduce a novel biosensor based on a chirped guided-mode resonant grating. The chirped grating combines the sensing function with the readout function by translating spectral information into spatial information that is easily read out with a simple CMOS camera. We demonstrate a refractive index sensitivity of 137 nm/RIU and an extrapolated limit of detection of 267 pM for the specific binding of an immunoglobulin G antibody. The chirped guided-mode resonance approach introduces a new degree of freedom for sensing biomedical information that combines high sensitivity with autonomous operation. We estimate that the cost of components is U.S. $10 or less when mass manufactured, so the technology has the potential to truly transform point-of-care applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive guided-mode resonance biosensors superimposed with vertical-sidewall roughness

Chih-Sheng Jao and Hoang Yan Lin
Appl. Opt. 50(26) 5139-5148 (2011)

Guided Bloch surface wave resonance for biosensor designs

Xiu-Bao Kang, Lan-Jun Liu, Hai Lu, Hai-Dong Li, and Zhi-Guo Wang
J. Opt. Soc. Am. A 33(5) 997-1003 (2016)

Guided mode biosensor based on grating coupled porous silicon waveguide

Xing Wei and Sharon M. Weiss
Opt. Express 19(12) 11330-11339 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Genalyte, The Maverick Detection System, http://www.genalyte.com/about-us/our-technology/ .
  2. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
    [Crossref]
  3. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
    [Crossref]
  4. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
    [Crossref]
  5. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [Crossref]
  6. Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355 (1997).
  7. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
    [Crossref]
  8. K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express 23, 17179–17184 (2015).
    [Crossref]
  9. D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
    [Crossref]
  10. P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51, 11585–11588 (2012).
    [Crossref]
  11. D. Zhang and Q. Liu, “Biosensors and bioelectronics on smartphone for portable biochemical detection,” Biosens. Bioelectron. 75, 273–284 (2016).
    [Crossref]
  12. K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5, 3792–3806 (2014).
    [Crossref]
  13. J. Dübendorfer and R. E. Kunz, “Compact integrated optical immunosensor using replicated chirped grating coupler sensor chips,” Appl. Opt. 37, 1890–1894 (1998).
    [Crossref]
  14. R. E. Kunz, “Gradient effective index waveguide sensors,” Sens. Actuators B 11, 167–176 (1993).
    [Crossref]
  15. B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
    [Crossref]
  16. H. C. Flemming, “Biofouling in water systems—Cases, causes and countermeasures,” Appl. Microbiol. Biotechnol. 59, 629–640 (2002).
    [Crossref]
  17. M. P. Kreuzer, C. K. O’Sullivan, M. Pravda, and G. G. Guilbault, “Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples,” Anal. Chim. Acta 442, 45–53 (2001).
  18. K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
    [Crossref]
  19. Filmetrics, Refractive index of Si3N4, Silicon Nitride, SiN, SiON, http://www.filmetrics.com/refractive-index-database/Si3N4/Silicon-Nitride-SiN .
  20. H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
  21. G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).
  22. M. Elwenspoek and R. J. Wiegerink, Mechanical Microsensors (Springer, 2001).
  23. G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
  25. K. R. Harper, “Theory, design, and fabrication of diffractive grating coupler for slab waveguide,” All Theses and Dissertations Paper 101 (Brigham Young University, 2003), p. 193.
  26. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [Crossref]
  27. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  28. W. M. bin Mat Yunus and A. bin Abdul Rahman, “Refractive index of solutions at high concentrations: erratum,” Appl. Opt. 28, 2465 (1989).
  29. I. Block and N. Ganesh, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE. Sens. J. 8, 274–280 (2008).
    [Crossref]
  30. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
    [Crossref]
  31. A. Chandekar, S. K. Sengupta, and J. E. Whitten, “Thermal stability of thiol and silane monolayers: a comparative study,” Appl. Surf. Sci. 256, 2742–2749 (2010).
    [Crossref]
  32. S. K. Vashist, “Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications,” Diagnostics 2, 23–33 (2012).
    [Crossref]
  33. E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
    [Crossref]

2016 (2)

D. Zhang and Q. Liu, “Biosensors and bioelectronics on smartphone for portable biochemical detection,” Biosens. Bioelectron. 75, 273–284 (2016).
[Crossref]

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

2015 (3)

B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
[Crossref]

K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express 23, 17179–17184 (2015).
[Crossref]

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

2014 (1)

2013 (1)

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

2012 (3)

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51, 11585–11588 (2012).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

S. K. Vashist, “Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications,” Diagnostics 2, 23–33 (2012).
[Crossref]

2011 (2)

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

2010 (2)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

A. Chandekar, S. K. Sengupta, and J. E. Whitten, “Thermal stability of thiol and silane monolayers: a comparative study,” Appl. Surf. Sci. 256, 2742–2749 (2010).
[Crossref]

2008 (1)

I. Block and N. Ganesh, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE. Sens. J. 8, 274–280 (2008).
[Crossref]

2007 (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

2003 (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

2002 (3)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

H. C. Flemming, “Biofouling in water systems—Cases, causes and countermeasures,” Appl. Microbiol. Biotechnol. 59, 629–640 (2002).
[Crossref]

2001 (1)

M. P. Kreuzer, C. K. O’Sullivan, M. Pravda, and G. G. Guilbault, “Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples,” Anal. Chim. Acta 442, 45–53 (2001).

1998 (1)

1997 (1)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355 (1997).

1995 (1)

1993 (1)

R. E. Kunz, “Gradient effective index waveguide sensors,” Sens. Actuators B 11, 167–176 (1993).
[Crossref]

1989 (1)

1973 (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Anderson, J. M.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Bashir, R.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

bin Abdul Rahman, A.

bin Mat Yunus, W. M.

Block, I.

I. Block and N. Ganesh, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE. Sens. J. 8, 274–280 (2008).
[Crossref]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Bremer, K.

Chan, V.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Chandekar, A.

A. Chandekar, S. K. Sengupta, and J. E. Whitten, “Thermal stability of thiol and silane monolayers: a comparative study,” Appl. Surf. Sci. 256, 2742–2749 (2010).
[Crossref]

Chaudhery, V.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Cima, M. J.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Clark, P. P.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

Cunningham, B.

B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
[Crossref]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Cunningham, B. T.

K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5, 3792–3806 (2014).
[Crossref]

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Damnik, N.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

Dübendorfer, J.

Elwenspoek, M.

M. Elwenspoek and R. J. Wiegerink, Mechanical Microsensors (Springer, 2001).

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Evans, G. J. O.

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

Fan, S.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Filippini, D.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51, 11585–11588 (2012).
[Crossref]

Fischer, M.

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

Flemming, H. C.

H. C. Flemming, “Biofouling in water systems—Cases, causes and countermeasures,” Appl. Microbiol. Biotechnol. 59, 629–640 (2002).
[Crossref]

Gallegos, D.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

Ganesh, N.

I. Block and N. Ganesh, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE. Sens. J. 8, 274–280 (2008).
[Crossref]

Gaylord, T. K.

George, S.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Gonzalez, M. C.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51, 11585–11588 (2012).
[Crossref]

Grann, E. B.

Guilbault, G. G.

M. P. Kreuzer, C. K. O’Sullivan, M. Pravda, and G. G. Guilbault, “Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples,” Anal. Chim. Acta 442, 45–53 (2001).

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Harper, K. R.

K. R. Harper, “Theory, design, and fabrication of diffractive grating coupler for slab waveguide,” All Theses and Dissertations Paper 101 (Brigham Young University, 2003), p. 193.

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Joannopoulos, J.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Kohl, A.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Krauss, T. F.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

Kreuzer, M. P.

M. P. Kreuzer, C. K. O’Sullivan, M. Pravda, and G. G. Guilbault, “Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples,” Anal. Chim. Acta 442, 45–53 (2001).

Kunz, R. E.

Kwon, L.

B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
[Crossref]

Langer, R.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Li, J.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Li, K.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Li, P.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Lidstone, E. A.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Lin, Y.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

Liu, Q.

D. Zhang and Q. Liu, “Biosensors and bioelectronics on smartphone for portable biochemical detection,” Biosens. Bioelectron. 75, 273–284 (2016).
[Crossref]

Long, K. D.

K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5, 3792–3806 (2014).
[Crossref]

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

Martins, E. R.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Moharam, M. G.

Müenchenberger, J.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Nath, P.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

O’Sullivan, C. K.

M. P. Kreuzer, C. K. O’Sullivan, M. Pravda, and G. G. Guilbault, “Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples,” Anal. Chim. Acta 442, 45–53 (2001).

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Philipp, H. R.

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).

Pommet, D. A.

Pravda, M.

M. P. Kreuzer, C. K. O’Sullivan, M. Pravda, and G. G. Guilbault, “Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples,” Anal. Chim. Acta 442, 45–53 (2001).

Preechaburana, P.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51, 11585–11588 (2012).
[Crossref]

Race, C.

B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
[Crossref]

Rao, Y.-J.

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355 (1997).

Reardon, C.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Roth, B.

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

Schook, L. B.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Schuster, C. S.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Scullion, M. G.

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

Sengupta, S. K.

A. Chandekar, S. K. Sengupta, and J. E. Whitten, “Thermal stability of thiol and silane monolayers: a comparative study,” Appl. Surf. Sci. 256, 2742–2749 (2010).
[Crossref]

Shawgo, R. S.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Shive, M. S.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Stellinga, D.

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

Suska, A.

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51, 11585–11588 (2012).
[Crossref]

Triggs, G. J.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Vashist, S. K.

S. K. Vashist, “Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications,” Diagnostics 2, 23–33 (2012).
[Crossref]

Von Recum, H.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Voskerician, G.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Wang, X.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Wang, Y.

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Whitten, J. E.

A. Chandekar, S. K. Sengupta, and J. E. Whitten, “Thermal stability of thiol and silane monolayers: a comparative study,” Appl. Surf. Sci. 256, 2742–2749 (2010).
[Crossref]

Wiegerink, R. J.

M. Elwenspoek and R. J. Wiegerink, Mechanical Microsensors (Springer, 2001).

Wolf-Jensen, T.

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Yu, H.

K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5, 3792–3806 (2014).
[Crossref]

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

Zhang, D.

D. Zhang and Q. Liu, “Biosensors and bioelectronics on smartphone for portable biochemical detection,” Biosens. Bioelectron. 75, 273–284 (2016).
[Crossref]

Zhang, M.

B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
[Crossref]

Zhuo, Y.

B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Anal. Chim. Acta (1)

M. P. Kreuzer, C. K. O’Sullivan, M. Pravda, and G. G. Guilbault, “Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples,” Anal. Chim. Acta 442, 45–53 (2001).

Analyst (1)

E. A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T. Wolf-Jensen, L. B. Schook, R. Bashir, and B. T. Cunningham, “Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” Analyst 136, 3608–3615 (2011).
[Crossref]

Angew. Chem. Int. Ed. (1)

P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. 51, 11585–11588 (2012).
[Crossref]

Appl. Microbiol. Biotechnol. (1)

H. C. Flemming, “Biofouling in water systems—Cases, causes and countermeasures,” Appl. Microbiol. Biotechnol. 59, 629–640 (2002).
[Crossref]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

A. Chandekar, S. K. Sengupta, and J. E. Whitten, “Thermal stability of thiol and silane monolayers: a comparative study,” Appl. Surf. Sci. 256, 2742–2749 (2010).
[Crossref]

Biomaterials (1)

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24, 1959–1967 (2003).

Biomed. Opt. Express (1)

Biosens. Bioelectron. (3)

D. Zhang and Q. Liu, “Biosensors and bioelectronics on smartphone for portable biochemical detection,” Biosens. Bioelectron. 75, 273–284 (2016).
[Crossref]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[Crossref]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

Diagnostics (1)

S. K. Vashist, “Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications,” Diagnostics 2, 23–33 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

IEEE Photon. J. (1)

G. J. Triggs, M. Fischer, D. Stellinga, M. G. Scullion, G. J. O. Evans, and T. F. Krauss, “Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing,” IEEE Photon. J. 7, 1–10 (2015).

IEEE Sens. J. (1)

B. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, “Review of recent advances in biosensing with photonic crystal surfaces,” IEEE Sens. J. 16, 3349–3366 (2015).
[Crossref]

IEEE. Sens. J. (1)

I. Block and N. Ganesh, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE. Sens. J. 8, 274–280 (2008).
[Crossref]

J. Electrochem. Soc. (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).

J. Opt. Soc. Am. A (1)

Lab Chip (1)

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13, 2124–2132 (2013).
[Crossref]

Laser Photon. Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Meas. Sci. Technol. (1)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355 (1997).

Opt. Express (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Phys. Rev. B (1)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Sci. Rep. (1)

K. Li, J. Li, C. Reardon, C. S. Schuster, Y. Wang, G. J. Triggs, N. Damnik, J. Müenchenberger, X. Wang, E. R. Martins, and T. F. Krauss, “High speed e-beam writing for large area photonic nanostructures—a choice of parameters,” Sci. Rep. 6, 32945 (2016).
[Crossref]

Sens. Actuators B (2)

R. E. Kunz, “Gradient effective index waveguide sensors,” Sens. Actuators B 11, 167–176 (1993).
[Crossref]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[Crossref]

Other (4)

Genalyte, The Maverick Detection System, http://www.genalyte.com/about-us/our-technology/ .

Filmetrics, Refractive index of Si3N4, Silicon Nitride, SiN, SiON, http://www.filmetrics.com/refractive-index-database/Si3N4/Silicon-Nitride-SiN .

M. Elwenspoek and R. J. Wiegerink, Mechanical Microsensors (Springer, 2001).

K. R. Harper, “Theory, design, and fabrication of diffractive grating coupler for slab waveguide,” All Theses and Dissertations Paper 101 (Brigham Young University, 2003), p. 193.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (764 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Typical measured reflectance spectrum from a regular Si3N4 grating. (b) The chirped grating design: the grating is composed of strips, each with a different FF, in order to chirp λR as a function of its position along Y (FF change is exaggerated here for illustration purposes).
Fig. 2.
Fig. 2. (a) Resonance wavelength map of the grating (water is the surrounding liquid). (b) Brightfield image of the grating under monochromatic illumination. (c) Intensity profile of the resonance shown in (b), averaged horizontally and normalized. The blue curve shows raw data, while the red curve shows a fitted Fano curve, as described in the text. The position of the resonance is monitored continually, allowing changes in the refractive index (Δn) to be detected.
Fig. 3.
Fig. 3. (a) Position of the resonance peak versus time as different glucose solutions are introduced, where the percentages indicate the %w/v glucose concentration. Water (0%) was introduced between each sugar solution. (b) Position versus time for water only, centered about the mean. The red, blue, and green lines indicate one, two, and three standard deviations (σ) away from the mean, respectively.
Fig. 4.
Fig. 4. IgG binding assay showing the shift in resonance position against time for both the measurement and reference channels, with each assay step indicated. The two small dashed regions on the curves correspond to where the signal was lost momentarily due to the flow channel becoming partially blocked. The illustration underneath shows the flow channel configuration used for the experiment: two separate channels allow one to be functionalized and the other kept as a reference. The analyte was pulled through the channels by a single syringe pump operating with two separate syringes, one for each channel.

Metrics