Abstract

Attenuation in photonic bandgap guiding hollow-core photonic crystal fiber (HC-PCF) has not beaten the fundamental silica Rayleigh scattering limit (SRSL) of conventional step-index fibers due to strong core-cladding optical overlap, surface roughness at the silica cladding struts, and the presence of interface modes. Hope has been revived recently by the introduction of hypocycloid core contour (i.e., negative curvature) in inhibited-coupling guiding HC-PCF. We report on several fibers with a hypocycloid core contour and a cladding structure made of a single ring from a tubular amorphous lattice, including one with a record transmission loss of 7.7 dB/km at 750  nm (only a factor 2 above the SRSL) and a second with an ultrabroad fundamental band with loss in the range of 10–20 dB/km, spanning from 600 to 1200 nm. The reduction in confinement loss makes these fibers serious contenders for light transmission below the SRSL in the UV–VIS–NIR spectral range and could find application in high-energy pulse laser beam delivery or gas-based coherent and nonlinear optics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid
Opt. Express 21(23) 28597-28608 (2013)

Single-mode, low loss hollow-core anti-resonant fiber designs

Md. Selim Habib, J. E. Antonio-Lopez, Christos Markos, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 27(4) 3824-3836 (2019)

Inhibited coupling guiding hollow fibers for label-free DNA detection

F. Giovanardi, A. Cucinotta, and Luca Vincetti
Opt. Express 25(21) 26215-26220 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
    [Crossref]
  2. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
    [Crossref]
  3. P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  4. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref]
  5. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref]
  6. J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).
  7. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
    [Crossref]
  8. F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
    [Crossref]
  9. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (IEEE, 2010), paper CPDB4.
  10. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
    [Crossref]
  11. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber, part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
    [Crossref]
  12. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gerome, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
    [Crossref]
  13. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19, 1441–1448 (2011).
    [Crossref]
  14. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20, 11153–11158 (2012).
    [Crossref]
  15. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70 dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
    [Crossref]
  16. F. Benabid, F. Gerome, B. Debord, and M. Alharbi, “Kagome PC fiber goes to extremes for ultrashort-pulse lasers,” Laser Focus World 50, 29–34 (2014).
  17. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
    [Crossref]
  18. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
    [Crossref]
  19. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
    [Crossref]
  20. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.
  21. H. Kawamura, “Statistics of two-dimensional amorphous lattice,” Prog. Theor. Phys. 70, 352–365 (1983).
    [Crossref]
  22. M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
    [Crossref]
  23. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  24. J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. St.J. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11, 2854–2861 (2003).
    [Crossref]
  25. M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. Inst. Electr. Eng. 116, 214–224 (1969).
  26. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [Crossref]
  27. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [Crossref]
  28. D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
    [Crossref]
  29. H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23, 2–16 (1975).
    [Crossref]
  30. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
    [Crossref]
  31. L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
    [Crossref]
  32. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807 (2014).
    [Crossref]
  33. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber, part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
    [Crossref]
  34. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
    [Crossref]
  35. P. Calvet, “Mise en forme spatiale dans une fibre optique microstructurée pour la réalisation d’amplificateurs lasers tout fibrés pour les pilotes des lasers de puissance,” Ph.D. dissertation (Université des Sciences et Technologies de Lille, 2014).
  36. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
    [Crossref]
  37. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
    [Crossref]

2016 (3)

2015 (1)

2014 (5)

2013 (4)

2012 (1)

2011 (4)

2010 (1)

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

2006 (1)

2005 (1)

2003 (1)

2002 (1)

1995 (1)

T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

1994 (1)

1989 (1)

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[Crossref]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

1983 (1)

H. Kawamura, “Statistics of two-dimensional amorphous lattice,” Prog. Theor. Phys. 70, 352–365 (1983).
[Crossref]

1975 (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23, 2–16 (1975).
[Crossref]

1969 (1)

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. Inst. Electr. Eng. 116, 214–224 (1969).

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

1929 (1)

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Abdolvand, A.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Abeeluck, A. K.

Alharbi, M.

Alkeskjold, T. T.

Atkin, D. M.

T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Bache, M.

Bang, O.

Beaudou, B.

Belardi, W.

Benabid, F.

F. Benabid, F. Gerome, B. Debord, and M. Alharbi, “Kagome PC fiber goes to extremes for ultrashort-pulse lasers,” Laser Focus World 50, 29–34 (2014).

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gerome, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber, part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber, part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70 dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (IEEE, 2010), paper CPDB4.

Bird, D. M.

Biriukov, A. S.

Birks, T.

Birks, T. A.

J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. St.J. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11, 2854–2861 (2003).
[Crossref]

T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Bradley, T.

Bradley, T. D.

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70 dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Calvet, P.

P. Calvet, “Mise en forme spatiale dans une fibre optique microstructurée pour la réalisation d’amplificateurs lasers tout fibrés pour les pilotes des lasers de puissance,” Ph.D. dissertation (Université des Sciences et Technologies de Lille, 2014).

Chang, W.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Chen, Y.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Couny, F.

Debord, B.

Dianov, E. M.

Dreisow, F.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Eggleton, B. J.

Farr, L.

Fourcade-Dutin, C.

Gerome, F.

Gérôme, F.

Ghalmi, S.

Ghosh, D.

Gouveia, M. A.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Habib, M. S.

Hayes, J. R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Headley, C.

Hedley, T. D.

Heinrich, M.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Hoenninger, C.

Holzer, P.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Huang, W.-P.

Husakou, A.

Jakobsen, C.

Jasion, G. T.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Kawamura, H.

H. Kawamura, “Statistics of two-dimensional amorphous lattice,” Prog. Theor. Phys. 70, 352–365 (1983).
[Crossref]

Keil, R.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Kharadly, M. M. Z.

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. Inst. Electr. Eng. 116, 214–224 (1969).

Knight, J.

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kogelnik, H.

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23, 2–16 (1975).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kolyadin, A. N.

Kosolapov, A. F.

Lægsgaard, J.

Lewis, J. E.

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. Inst. Electr. Eng. 116, 214–224 (1969).

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[Crossref]

Litchinitser, N. M.

Liu, Z.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Lyngsø, J. K.

Mangan, B.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Marcuse, D.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[Crossref]

Mason, M.

Michieletto, M.

Mottay, E.

Nicholson, J. W.

Nolte, S.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Numkam-Fokoua, E.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Petrovich, M. N.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807 (2014).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Pottage, J. M.

Pryamikov, A. D.

Ramachandran, S.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Rechtsman, M.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Richardson, D. J.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Roberts, P.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. St.J. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11, 2854–2861 (2003).
[Crossref]

T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (IEEE, 2010), paper CPDB4.

Sabert, H.

Sandoghchi, S. R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Segev, M.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Semjonov, S. L.

Setti, V.

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Slavik, R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

St.J. Russell, P.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. St.J. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11, 2854–2861 (2003).
[Crossref]

T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Szameit, A.

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Tomlinson, A.

Travers, J. C.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Vincetti, L.

von Neumann, J.

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Wadsworth, W. J.

Wang, Y.

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70 dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (IEEE, 2010), paper CPDB4.

Wang, Y. Y.

Wheeler, N. V.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

Wigner, E.

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Williams, D.

Yablon, A. D.

Yu, F.

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23, 2–16 (1975).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Focus World (1)

F. Benabid, F. Gerome, B. Debord, and M. Alharbi, “Kagome PC fiber goes to extremes for ultrashort-pulse lasers,” Laser Focus World 50, 29–34 (2014).

Nat. Photonics (1)

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Nat. Rev. Mater. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Opt. Express (14)

J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. St.J. Russell, and P. J. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express 11, 2854–2861 (2003).
[Crossref]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber, part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber, part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gerome, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807 (2014).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
[Crossref]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
[Crossref]

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011).
[Crossref]

Phys. Z. (1)

J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Proc. Inst. Electr. Eng. (1)

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. Inst. Electr. Eng. 116, 214–224 (1969).

Prog. Theor. Phys. (1)

H. Kawamura, “Statistics of two-dimensional amorphous lattice,” Prog. Theor. Phys. 70, 352–365 (1983).
[Crossref]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Other (3)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (IEEE, 2010), paper CPDB4.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), paper Th5A.3.

P. Calvet, “Mise en forme spatiale dans une fibre optique microstructurée pour la réalisation d’amplificateurs lasers tout fibrés pour les pilotes des lasers de puissance,” Ph.D. dissertation (Université des Sciences et Technologies de Lille, 2014).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (18271 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of HC-PCF with a single-ring tubular amorphous lattice (i), section of a tubular lattice in a triangular arrangement (ii), and the details of its unit cell (iii). δ is the inter-tube gap distance, R t is the tube radius, and t is the tube ring thickness. (b) Density of photonic state (DOPS) of an infinite tubular lattice in triangular arrangement. The DOPS value is normalized to that of the vacuum. (c) Transverse profiles of the electric field magnitude of the photonic state (modes) for F = 0.8 (fundamental band) and F = 1.2 (first higher-order band). The vertical axes are the lattice mode effective indices at F = 0.8 and F = 1.2 . The displayed profiles correspond to modes with effective index above (dashed red box) and crossing (dotted blue box) the vacuum line. The label on the top left of the mode profile corresponds to the nature of the mode (HE or EH). The numbers at the bottom of the mode profile correspond, respectively, to the mode effective index and to the indices of the azimuthal and radial components of the transverse wave number, respectively ( m , l ).
Fig. 2.
Fig. 2. (a) Field amplitude transverse profile of a unit cell of tubular lattice (top left). First row shows its evolution with inter-tube gap δ when varied from 2 to 8 μm, and second row shows 1D profile along the gap line (labeled “ z ”) between the center of two adjacent tubes. (b) Field amplitude transverse profile of a fiber core with tubular amorphous lattice cladding (bottom right schematics) and its evolution with δ (third row). MFR/RC is the ratio between the mode-field radius (MFR) and the fiber core inner radius R c . 1D profile of the fiber core mode along a cladding inter-tube line (labeled “ z ”). Here, the wavelength of the modes is 700 nm.
Fig. 3.
Fig. 3. (a) CL for different N . (b) Ratio between TE 01 and HE 11 loss. (c) Loss spectra versus δ . (d) Loss and optical overlap of HE 11 with the cladding silica dielectric (DO) spectra for different t values (200, 400, and 500 nm).
Fig. 4.
Fig. 4. (a) SEM pictures of four fabricated HC tubular lattice fibers with corresponding geometrical parameters ( δ , R t , t , R c ). (b) Experimental evolution of the loss spectrum with the gap between the tubes.
Fig. 5.
Fig. 5. SEM pictures of (a) Fiber #5 and (b) Fiber #6. Transmission curves along the two fiber pieces recorded during cut-back measurement for (c)(i) Fiber #5 and (d)(i) Fiber #6. Measured attenuation spectra (black curves) and calculated CL (dotted blue curves) for (c)(ii) Fiber #5 and (d)(ii) Fiber #6. Fiber #5 reaches a record of 7.7 dB/km, and Fiber #6 exhibits a loss in the range 10–20 dB/km over one octave [(d)(ii)]. The blanked data around 1 μm in (d)(ii) are due to the stronger supercontinuum power at 1064 nm. Bottom: Measured transmission of a 2 m long piece of (e) Fiber #5 and (f) Fiber #6, with purple-filled curve highlighting UV/DUV guidance.
Fig. 6.
Fig. 6. (a) Group delay curves of the HOM content propagating in Fiber #6 for 5 and 15 m long pieces. The reconstructed mode field profiles are indicated with the corresponding MPI. (b) Evolution of the PER versus the fiber length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( m 2    R t ) 2 + ( ( l 1 ) π t ) 2 ( 2 π / λ ) 2 ( n g 2 1 ) .

Metrics