Abstract

High-resolution spectroscopy of molecular gases requires sources of mid-infrared laser light combining narrow linewidths and wavelength tunability. Continuous-wave optical parametric oscillators (cw OPOs) fulfill these demands; however, their mid-infrared tuning range has been limited to wavelengths below 5.5 μm so far. Here, we demonstrate the first cw OPO emitting mid-infrared light at wavelengths up to 8 μm. This device is based on a 3.5-mm-diameter whispering gallery resonator made of silver gallium selenide (AgGaSe2) pumped by a compact distributed feedback laser diode emitting at the 1.57 μm wavelength. The oscillation thresholds are in the mW region, while the output powers range from 10 to 800 μW. By changing the radial mode number of the pump wave, wavelengths of up to 8 μm are achieved. Temperature variation enables 100-nm-wide wavelength tuning. The measured tuning branches are in good accordance with the simulations. Furthermore, the latter show that whispering-gallery OPOs based on AgGaSe2 with diameters around 2 mm can generate idler waves exceeding the 10 μm wavelength.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave whispering-gallery optical parametric oscillator based on CdSiP2

Yuechen Jia, Kevin Hanka, Kevin T. Zawilski, Peter G. Schunemann, Karsten Buse, and Ingo Breunig
Opt. Express 26(8) 10833-10841 (2018)

Femtosecond optical parametric oscillator continuously tunable across 3.6–8  μm based on orientation-patterned gallium phosphide

Callum F. O’Donnell, S. Chaitanya Kumar, P. G. Schunemann, and M. Ebrahim-Zadeh
Opt. Lett. 44(18) 4570-4573 (2019)

Continuous-wave whispering-gallery optical parametric oscillator for high-resolution spectroscopy

Christoph S. Werner, Karsten Buse, and Ingo Breunig
Opt. Lett. 40(5) 772-775 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn, Science 286, 1513 (1999).
    [Crossref]
  2. M. Ebrahim-Zadeh, Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2010), Vol. 4, chap. 17.
  3. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
    [Crossref]
  4. M. Vainio and L. Halonen, Phys. Chem. Chem. Phys. 18, 4266 (2016).
    [Crossref]
  5. V. Petrov, Prog. Quantum Electron. 42, 1 (2015).
    [Crossref]
  6. I. Breunig, D. Haertle, and K. Buse, Appl. Phys. B 105, 99 (2011).
    [Crossref]
  7. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, Opt. Express 17, 87 (2009).
    [Crossref]
  8. J. Kiessling, F. Fuchs, K. Buse, and I. Breunig, Opt. Lett. 36, 4374 (2011).
    [Crossref]
  9. K. L. Vodopyanov, Topics in Applied Physics, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer, 2003), Vol. 89, pp. 141–180.
  10. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
    [Crossref]
  11. K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, Opt. Express 22, 4131 (2014).
    [Crossref]
  12. L. Maidment, P. G. Schunemann, and D. T. Reid, Opt. Lett. 41, 4261 (2016).
    [Crossref]
  13. A. Douillet and J.-J. Zondy, Opt. Lett. 23, 1259 (1998).
    [Crossref]
  14. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  15. L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.
  16. I. Breunig, Laser Photon. Rev. 10, 569 (2016).
    [Crossref]
  17. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, Nat. Commun. 5, 3109 (2014).
    [Crossref]
  18. M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
    [Crossref]
  19. G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, Optica 2, 773 (2015).
    [Crossref]
  20. S.-K. Meisenheimer, J. U. Fürst, A. Schiller, F. Holderied, K. Buse, and I. Breunig, Opt. Express 24, 15137 (2016).
    [Crossref]
  21. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, Phys. Rev. Lett. 105, 263904 (2010).
    [Crossref]
  22. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
    [Crossref]
  23. Q. Mo, S. Li, Y. Liu, X. Jiang, G. Zhao, Z. Xie, X. Lv, and S. Zhu, Chin. Opt. Lett. 14, 091902 (2016).
    [Crossref]
  24. A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, Phys. Rev. A 70, 051804 (2004).
    [Crossref]
  25. G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, Opt. Express 22, 30795 (2014).
    [Crossref]
  26. E. Tanaka and K. Kato, Appl. Opt. 37, 561 (1998).
    [Crossref]
  27. V. S. Ilchenko and M. L. Gorodetsky, Laser Phys. 2, 1004 (1992).
  28. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
    [Crossref]
  29. C. S. Werner, K. Buse, and I. Breunig, Opt. Lett. 40, 772 (2015).
    [Crossref]
  30. V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, Opt. Lett. 38, 4281 (2013).
    [Crossref]
  31. I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
    [Crossref]

2016 (5)

2015 (4)

2014 (3)

2013 (2)

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, Opt. Lett. 38, 4281 (2013).
[Crossref]

2011 (3)

J. Kiessling, F. Fuchs, K. Buse, and I. Breunig, Opt. Lett. 36, 4374 (2011).
[Crossref]

I. Breunig, D. Haertle, and K. Buse, Appl. Phys. B 105, 99 (2011).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

2010 (1)

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

2009 (1)

2006 (1)

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[Crossref]

2004 (3)

1999 (1)

M. H. Dunn, Science 286, 1513 (1999).
[Crossref]

1998 (2)

1992 (1)

V. S. Ilchenko and M. L. Gorodetsky, Laser Phys. 2, 1004 (1992).

Aiello, A.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

Arslanov, D. D.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

Beckmann, T.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Becouarn, L.

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, Nat. Commun. 5, 3109 (2014).
[Crossref]

Breunig, I.

Budni, P. A.

L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.

Buse, K.

Carmon, T.

Christiansen, S.

Cristescu, S. M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

de Natale, P.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

de Rosa, M.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

Dierolf, V.

Douillet, A.

Dunn, M. H.

M. H. Dunn, Science 286, 1513 (1999).
[Crossref]

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh, Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2010), Vol. 4, chap. 17.

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

Fejer, M. M.

Fomin, A. E.

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[Crossref]

Förtsch, M.

Fuchs, F.

Fürst, J. U.

Gerard, B.

Göbelt, M.

Gorodetsky, M. L.

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[Crossref]

V. S. Ilchenko and M. L. Gorodetsky, Laser Phys. 2, 1004 (1992).

Haertle, D.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

I. Breunig, D. Haertle, and K. Buse, Appl. Phys. B 105, 99 (2011).
[Crossref]

Halonen, L.

M. Vainio and L. Halonen, Phys. Chem. Chem. Phys. 18, 4266 (2016).
[Crossref]

V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, Opt. Lett. 38, 4281 (2013).
[Crossref]

Harren, F. J. M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

Harris, J. S.

Holderied, F.

Ilchenko, V.

A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, Phys. Rev. A 70, 051804 (2004).
[Crossref]

Ilchenko, V. S.

V. S. Ilchenko and M. L. Gorodetsky, Laser Phys. 2, 1004 (1992).

Jiang, X.

Jones, C.

L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.

Kato, K.

Kiessling, J.

Kuo, P. S.

Lallier, E.

Leuchs, G.

Levi, O.

Li, S.

Linnenbank, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Liu, Y.

Lv, X.

Maddaloni, P.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

Maidment, L.

Makasyuk, I.

Maleki, L.

A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, Phys. Rev. A 70, 051804 (2004).
[Crossref]

Mandon, J.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

Marquardt, C.

Matsko, A.

A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, Phys. Rev. A 70, 051804 (2004).
[Crossref]

Meisenheimer, S.-K.

Mo, Q.

Mosca, S.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Parisi, M.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

Persijn, S. T.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

Petrov, V.

V. Petrov, Prog. Quantum Electron. 42, 1 (2015).
[Crossref]

Phillips, C. R.

Pinguet, T. J.

Pomeranz, L. A.

L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.

Reid, D. T.

Ricciardi, I.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

Santamaria, L.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

Savchenkov, A.

A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, Phys. Rev. A 70, 051804 (2004).
[Crossref]

Schiller, A.

Schunemann, P. G.

L. Maidment, P. G. Schunemann, and D. T. Reid, Opt. Lett. 41, 4261 (2016).
[Crossref]

K. L. Vodopyanov, I. Makasyuk, and P. G. Schunemann, Opt. Express 22, 4131 (2014).
[Crossref]

L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.

Schunk, G.

Schwefel, H. G. L.

Sedlmeir, F.

Setzler, S. D.

L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, Nat. Commun. 5, 3109 (2014).
[Crossref]

Sowade, R.

Spunei, M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

Steigerwald, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Strekalov, D. V.

Sturman, B.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Tanaka, E.

Ulvila, V.

Vahala, K. J.

Vainio, M.

M. Vainio and L. Halonen, Phys. Chem. Chem. Phys. 18, 4266 (2016).
[Crossref]

V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, Opt. Lett. 38, 4281 (2013).
[Crossref]

Vodopyanov, K. L.

Vogl, U.

Werner, C. S.

Xie, Z.

Yang, L.

Zhao, G.

Zhu, S.

Zondy, J.-J.

Appl. Opt. (1)

Appl. Phys. B (1)

I. Breunig, D. Haertle, and K. Buse, Appl. Phys. B 105, 99 (2011).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[Crossref]

Laser Photon. Rev. (2)

I. Breunig, Laser Photon. Rev. 10, 569 (2016).
[Crossref]

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, Laser Photon. Rev. 7, 188 (2013).
[Crossref]

Laser Phys. (1)

V. S. Ilchenko and M. L. Gorodetsky, Laser Phys. 2, 1004 (1992).

Nat. Commun. (1)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, Nat. Commun. 5, 3109 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Optica (1)

Phys. Chem. Chem. Phys. (1)

M. Vainio and L. Halonen, Phys. Chem. Chem. Phys. 18, 4266 (2016).
[Crossref]

Phys. Rev. A (2)

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. de Natale, and M. de Rosa, Phys. Rev. A 91, 063839 (2015).
[Crossref]

A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, Phys. Rev. A 70, 051804 (2004).
[Crossref]

Phys. Rev. Lett. (2)

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, Phys. Rev. Lett. 106, 143903 (2011).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, Prog. Quantum Electron. 42, 1 (2015).
[Crossref]

Science (1)

M. H. Dunn, Science 286, 1513 (1999).
[Crossref]

Other (4)

M. Ebrahim-Zadeh, Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2010), Vol. 4, chap. 17.

K. L. Vodopyanov, Topics in Applied Physics, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer, 2003), Vol. 89, pp. 141–180.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Sketch of the experimental setup. The pump light is coupled into a WGR made of AgGaSe2 via a silicon coupling prism (P). The pump power can be adjusted by changing the distance of the two fiber ends. Signal and idler waves are generated in the WGR and analyzed with a spectrometer and a photodetector Ds. The power of the remaining pump light is measured with a photodetector Dp. The optical axis (o.a.) of the WGR material is parallel to the symmetry axis of the resonator.
Fig. 2.
Fig. 2. Normalized transmission of the pump wave as a function of its frequency shift (blue). The upper trace and the red dashed lines show the simulated relative frequency positions of modes with the radial mode numbers qp=49 and pp=0. The other resonances in the transmission spectrum belong to different mode combinations but are not investigated in terms of optical parametric oscillation.
Fig. 3.
Fig. 3. Signal output power versus pump power for excitation of the pump mode with qp=7. At pump powers exceeding 2 mW, signal and idler waves at wavelengths λs=2.54  μm and λi=4.11  μm are generated. The inset shows a photograph of the millimeter-sized WGR.
Fig. 4.
Fig. 4. Experimentally determined idler wavelengths (·) as a function of the resonator temperature. The solid lines correspond to the simulated tuning behavior for different combinations of (qp,qs,qiΔm) and pj=0.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1/λp=1/λs+1/λi
mp=ms+mi+Δm.

Metrics