Abstract

The need for energy efficiency and lower emissions from industrial plants and infrastructures is driving research into novel sensor technologies, especially those that allow observing and measuring greenhouse gases, such as CO2. CO2 emissions can be captured using mid-infrared imagers, but at present, these are based on hybrid technologies that need expensive manufacturing and require cooling. The high price tag prevents a wider diffusion of mid-infrared imagers and hence their use for many low-cost and large-volume applications. Here we report a monolithic III-V technology that integrates GaAs transistors with an InSb photodiode array. The monolithic material system reduces costs and provides an excellent platform for the sensor system-on-chip. We present a focal plane array imaging technology operating at room temperature in the 3–6 μm wavelength range that will address the need for identification and measurement of a range of industrially important gases.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
GaAs optoelectronic neuron arrays

Steven Lin, Annette Grot, Jiafu Luo, and Demetri Psaltis
Appl. Opt. 32(8) 1275-1289 (1993)

Design and characterization of a p+/n-well SPAD array in 150nm CMOS process

Hesong Xu, Lucio Pancheri, Gian-Franco Dalla Betta, and David Stoppa
Opt. Express 25(11) 12765-12778 (2017)

Monolithic integration of InGaAs n-FETs and lasers on Ge substrate

Annie Kumar, Shuh-Ying Lee, Sachin Yadav, Kian Hua Tan, Wan Khai Loke, Satrio Wicaksono, Daosheng Li, Saeid Masudy Panah, Gengchiau Liang, Soon-Fatt Yoon, Xiao Gong, Dimitri Antoniadis, and Yee-Chia Yeo
Opt. Express 25(5) 5146-5155 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer, 2006).
  2. M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266–4294 (2016).
    [Crossref]
  3. J. Sandsten, H. Edner, and S. Svanberg, “Gas visualization of industrial hydrocarbon emissions,” Opt. Express 12, 1443–1451 (2004).
    [Crossref]
  4. H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
    [Crossref]
  5. Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
    [Crossref]
  6. T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
    [Crossref]
  7. E. Theocharous and J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), pp. 349–367.
  8. S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.
  9. Y. Nemirovsky, S. Margalit, and I. Kidron, “n-channel insulated-gate field-effect transistors in Hg1−xCdxTe with x = 0.215,” Appl. Phys. Lett. 36, 466–468 (1980).
    [Crossref]
  10. P. Capper and C. T. Elliott, eds., Infrared Detectors and Emitters: Materials and Devices, Electronic Materials Series (Springer, 2001), Vol. 8.
  11. Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
    [Crossref]
  12. H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
    [Crossref]
  13. A. Craig, C. Reyner, A. Marshall, and D. Huffaker, “Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays,” Appl. Phys. Lett. 104, 213502 (2014).
    [Crossref]
  14. E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
    [Crossref]
  15. E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
    [Crossref]
  16. C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
    [Crossref]
  17. V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
    [Crossref]
  18. K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
    [Crossref]
  19. G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
    [Crossref]
  20. I. Kimukin, N. Biyikli, and E. Ozbay, “InSb high-speed photodetectors grown on GaAs substrate,” J. Appl. Phys. 94, 5414–5416 (2003).
    [Crossref]
  21. R. Bhan, R. Saxena, C. Jalwani, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J. 59, 580–589 (2009).
    [Crossref]
  22. A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
    [Crossref]
  23. A. Rogalski, P. Martyniuk, and M. Kopytko, “InAs/GaSb type-II superlattice infrared detectors: future prospect,” Appl. Phys. Rev. 4, 031304 (2017).
    [Crossref]
  24. Z. Tian and S. Krishna, “Mid-infrared metamorphic interband cascade photodetectors on GaAs substrates,” Appl. Phys. Lett. 107, 211114 (2015).
    [Crossref]
  25. M. Zavvari, “Quantum-dot-based single-photon avalanche detector for mid-infrared applications,” J. Opt. Soc. Am. B 32, 737–742 (2015).
    [Crossref]
  26. W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24, 16973–16985 (2016).
    [Crossref]
  27. L. Tao, K. Sun, M. Amir Khan, D. J. Miller, and M. A. Zondlo, “Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser,” Opt. Express 20, 28106–28118 (2012).
    [Crossref]
  28. R. K. Saku and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).
    [Crossref]
  29. B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
    [Crossref]
  30. The dataset of the research is available at http://dx.doi.org/10.5525/gla.researchdata.554 .

2017 (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “InAs/GaSb type-II superlattice infrared detectors: future prospect,” Appl. Phys. Rev. 4, 031304 (2017).
[Crossref]

2016 (3)

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266–4294 (2016).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24, 16973–16985 (2016).
[Crossref]

V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
[Crossref]

2015 (3)

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Z. Tian and S. Krishna, “Mid-infrared metamorphic interband cascade photodetectors on GaAs substrates,” Appl. Phys. Lett. 107, 211114 (2015).
[Crossref]

M. Zavvari, “Quantum-dot-based single-photon avalanche detector for mid-infrared applications,” J. Opt. Soc. Am. B 32, 737–742 (2015).
[Crossref]

2014 (2)

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

A. Craig, C. Reyner, A. Marshall, and D. Huffaker, “Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays,” Appl. Phys. Lett. 104, 213502 (2014).
[Crossref]

2013 (3)

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
[Crossref]

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

2012 (1)

2011 (1)

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

2010 (1)

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

2009 (2)

R. Bhan, R. Saxena, C. Jalwani, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J. 59, 580–589 (2009).
[Crossref]

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

2008 (2)

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

2005 (1)

R. K. Saku and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).
[Crossref]

2004 (1)

2003 (1)

I. Kimukin, N. Biyikli, and E. Ozbay, “InSb high-speed photodetectors grown on GaAs substrate,” J. Appl. Phys. 94, 5414–5416 (2003).
[Crossref]

2000 (1)

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

1991 (1)

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

1980 (1)

Y. Nemirovsky, S. Margalit, and I. Kidron, “n-channel insulated-gate field-effect transistors in Hg1−xCdxTe with x = 0.215,” Appl. Phys. Lett. 36, 466–468 (1980).
[Crossref]

Amir Khan, M.

Ashley, T.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Baghini, M.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Bai, Y.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Bajaj, J.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Balakrishnan, G.

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Bambery, K. R.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

Beletic, J. W.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Bhan, R.

R. Bhan, R. Saxena, C. Jalwani, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J. 59, 580–589 (2009).
[Crossref]

Birch, J. R.

E. Theocharous and J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), pp. 349–367.

Bitri, A.

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Biyikli, N.

I. Kimukin, N. Biyikli, and E. Ozbay, “InSb high-speed photodetectors grown on GaAs substrate,” J. Appl. Phys. 94, 5414–5416 (2003).
[Crossref]

Bourgeois, B.

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Brask, J.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Buckle, L.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Camargo, E.

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Camargo, E. G.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

Chakrabarti, S.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Chang, H.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Chau, R.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Cherng, Y.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Chiang, C.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Coomber, S. D.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

Craig, A.

A. Craig, C. Reyner, A. Marshall, and D. Huffaker, “Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays,” Appl. Phys. Lett. 104, 213502 (2014).
[Crossref]

A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
[Crossref]

Cumming, D. R. S.

V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
[Crossref]

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Dai, L.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Datta, S.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Dean, A. B.

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

Delatre, M.

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Dixon, M. W. A.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

Doczy, M.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Dong, L.

Edner, H.

Elliott, C. T.

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

Emeny, M.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Emeny, M. T.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

Endo, H.

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Fabriol, H.

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Farris, M. C.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Forman, H. L.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

Gau, Y.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Girard, J. F.

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Gluszek, A. K.

Gordon, N. T.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

Goto, H.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

Griffin, R. J.

Gupta, H.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Halonen, L.

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266–4294 (2016).
[Crossref]

Hayes, D.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Hilton, K.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Hirschmugl, C. J.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

Huang, K.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Hudzikowski, A. J.

Huffaker, D.

A. Craig, C. Reyner, A. Marshall, and D. Huffaker, “Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays,” Appl. Phys. Lett. 104, 213502 (2014).
[Crossref]

Ishibashi, K.

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Jalwani, C.

R. Bhan, R. Saxena, C. Jalwani, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J. 59, 580–589 (2009).
[Crossref]

Jefferies, R.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Jih, J.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Joshi, A.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Kakimoto, K.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

Kangawa, Y.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

Katsumata, T.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

Kawakami, Y.

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Khalid, A.

V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
[Crossref]

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Kidron, I.

Y. Nemirovsky, S. Margalit, and I. Kidron, “n-channel insulated-gate field-effect transistors in Hg1−xCdxTe with x = 0.215,” Appl. Phys. Lett. 36, 466–468 (1980).
[Crossref]

Kim, H.

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Kimukin, I.

I. Kimukin, N. Biyikli, and E. Ozbay, “InSb high-speed photodetectors grown on GaAs substrate,” J. Appl. Phys. 94, 5414–5416 (2003).
[Crossref]

Kopytko, M.

A. Rogalski, P. Martyniuk, and M. Kopytko, “InAs/GaSb type-II superlattice infrared detectors: future prospect,” Appl. Phys. Rev. 4, 031304 (2017).
[Crossref]

Krier, A.

A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
[Crossref]

A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer, 2006).

Krishna, S.

Z. Tian and S. Krishna, “Mid-infrared metamorphic interband cascade photodetectors on GaAs substrates,” Appl. Phys. Lett. 107, 211114 (2015).
[Crossref]

A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
[Crossref]

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Kumar, A.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Kuze, N.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Lauxtermann, S.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Li, C.

Liu, Y.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Lomash, S.

R. Bhan, R. Saxena, C. Jalwani, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J. 59, 580–589 (2009).
[Crossref]

Margalit, S.

Y. Nemirovsky, S. Margalit, and I. Kidron, “n-channel insulated-gate field-effect transistors in Hg1−xCdxTe with x = 0.215,” Appl. Phys. Lett. 36, 466–468 (1980).
[Crossref]

Marshall, A.

A. Craig, C. Reyner, A. Marshall, and D. Huffaker, “Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays,” Appl. Phys. Lett. 104, 213502 (2014).
[Crossref]

A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
[Crossref]

Martin, T.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Martyniuk, P.

A. Rogalski, P. Martyniuk, and M. Kopytko, “InAs/GaSb type-II superlattice infrared detectors: future prospect,” Appl. Phys. Rev. 4, 031304 (2017).
[Crossref]

Mattson, E.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

McConville, C. F.

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

Miller, D. J.

Mordechai, S.

R. K. Saku and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).
[Crossref]

Moriyasu, Y.

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Nagase, K.

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Nash, G. R.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

Nasse, M. J.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

Nemirovsky, Y.

Y. Nemirovsky, S. Margalit, and I. Kidron, “n-channel insulated-gate field-effect transistors in Hg1−xCdxTe with x = 0.215,” Appl. Phys. Lett. 36, 466–468 (1980).
[Crossref]

Ozbay, E.

I. Kimukin, N. Biyikli, and E. Ozbay, “InSb high-speed photodetectors grown on GaAs substrate,” J. Appl. Phys. 94, 5414–5416 (2003).
[Crossref]

Pajot, G.

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Parmar, R.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Paul, S.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Petersen, A.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Phillips, T. J.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Plis, E.

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Pryce, G. J.

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

Pusino, V.

V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
[Crossref]

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Reyner, C.

A. Craig, C. Reyner, A. Marshall, and D. Huffaker, “Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays,” Appl. Phys. Lett. 104, 213502 (2014).
[Crossref]

Robinson, P. B.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

Rodriguez, J.

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Rogalski, A.

A. Rogalski, P. Martyniuk, and M. Kopytko, “InAs/GaSb type-II superlattice infrared detectors: future prospect,” Appl. Phys. Rev. 4, 031304 (2017).
[Crossref]

Rohmer, J.

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Rotter, T.

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Saku, R. K.

R. K. Saku and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).
[Crossref]

Samudraiah, D.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Sanchez, N. P.

Sandsten, J.

Satou, M.

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Saxena, R.

R. Bhan, R. Saxena, C. Jalwani, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J. 59, 580–589 (2009).
[Crossref]

Sharma, D.

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Sharma, Y.

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Smith, S. J.

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

Sorel, M.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Steer, M. J.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Sun, K.

Svanberg, S.

Tao, L.

Thayne, I. G.

V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
[Crossref]

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Theocharous, E.

E. Theocharous and J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), pp. 349–367.

Tian, Z.

Z. Tian and S. Krishna, “Mid-infrared metamorphic interband cascade photodetectors on GaAs substrates,” Appl. Phys. Lett. 107, 211114 (2015).
[Crossref]

Tian, Z.-B.

A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
[Crossref]

Tilley, L.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

Tittel, F. K.

Ueno, K.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Vainio, M.

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266–4294 (2016).
[Crossref]

Wallis, D.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Weng, P.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Whitehouse, C. R.

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

Wilding, P.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

Williams, G.

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Wood, B. R.

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

Xie, C.

V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
[Crossref]

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

Yang, S.

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Ye, W.

Zavvari, M.

Zheng, C.

Zondlo, M. A.

Analyst (1)

B. R. Wood, K. R. Bambery, M. W. A. Dixon, L. Tilley, M. J. Nasse, E. Mattson, and C. J. Hirschmugl, “Diagnosing malaria infected cells at the single level using focal plane array Fourier transform infrared imaging spectroscopy,” Analyst 139, 4769–4774 (2014).
[Crossref]

Appl. Phys. Lett. (5)

Z. Tian and S. Krishna, “Mid-infrared metamorphic interband cascade photodetectors on GaAs substrates,” Appl. Phys. Lett. 107, 211114 (2015).
[Crossref]

T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, “Ambient temperature diodes and field-effect transistors in InSb/In1−xAlxSb,” Appl. Phys. Lett. 59, 1761–1763 (1991).
[Crossref]

Y. Nemirovsky, S. Margalit, and I. Kidron, “n-channel insulated-gate field-effect transistors in Hg1−xCdxTe with x = 0.215,” Appl. Phys. Lett. 36, 466–468 (1980).
[Crossref]

A. Craig, C. Reyner, A. Marshall, and D. Huffaker, “Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays,” Appl. Phys. Lett. 104, 213502 (2014).
[Crossref]

A. Craig, A. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103, 253502 (2013).
[Crossref]

Appl. Phys. Rev. (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “InAs/GaSb type-II superlattice infrared detectors: future prospect,” Appl. Phys. Rev. 4, 031304 (2017).
[Crossref]

Def. Sci. J. (1)

R. Bhan, R. Saxena, C. Jalwani, and S. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J. 59, 580–589 (2009).
[Crossref]

Electron. Lett. (1)

H. Gupta, D. Samudraiah, M. Baghini, D. Sharma, A. Kumar, S. Chakrabarti, S. Paul, and R. Parmar, “Design of large dynamic range, low-power, high-precision ROIC for quantum dot infrared photo-detector,” Electron. Lett. 49, 1018–1020 (2013).
[Crossref]

Energy Procedia (1)

H. Fabriol, A. Bitri, B. Bourgeois, M. Delatre, J. F. Girard, G. Pajot, and J. Rohmer, “Geophysical methods for CO2 plume imaging: comparison of performances,” Energy Procedia 4, 3604–3611 (2011).
[Crossref]

Future Oncol. (1)

R. K. Saku and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).
[Crossref]

IEEE Sens. J. (1)

G. R. Nash, H. L. Forman, S. J. Smith, P. B. Robinson, L. Buckle, S. D. Coomber, M. T. Emeny, N. T. Gordon, and T. Ashley, “Mid-infrared AlxIn1-xSb light-emitting diodes and photodiodes for hydrocarbon sensing,” IEEE Sens. J. 9, 1240–1243 (2009).
[Crossref]

IEEE Trans. Electron Devices (2)

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic integration of an active InSb-based mid-infrared photo-pixel with a GaAs MESFET,” IEEE Trans. Electron Devices 62, 4069–4075 (2015).
[Crossref]

V. Pusino, C. Xie, A. Khalid, I. G. Thayne, and D. R. S. Cumming, “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates,” IEEE Trans. Electron Devices 63, 3135–3142 (2016).
[Crossref]

J. Appl. Phys. (1)

I. Kimukin, N. Biyikli, and E. Ozbay, “InSb high-speed photodetectors grown on GaAs substrate,” J. Appl. Phys. 94, 5414–5416 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb mid-infrared photon detector for room-temperature operation,” Jpn. J. Appl. Phys. 52, 092202 (2013).
[Crossref]

Opt. Eng. (1)

E. Camargo, K. Ueno, Y. Kawakami, Y. Moriyasu, K. Nagase, M. Satou, H. Endo, K. Ishibashi, and N. Kuze, “Miniaturized InSb photovoltaic infrared sensor operating at room temperature,” Opt. Eng. 47, 014402 (2008).
[Crossref]

Opt. Express (3)

Phys. Chem. Chem. Phys. (1)

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266–4294 (2016).
[Crossref]

Proc. SPIE (2)

Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared,” Proc. SPIE 7021, 702102 (2008).
[Crossref]

Y. Gau, L. Dai, S. Yang, P. Weng, K. Huang, Y. Liu, C. Chiang, J. Jih, Y. Cherng, and H. Chang, “256 × 256 InSb focal plane arrays,” Proc. SPIE 4078, 467–479 (2000).
[Crossref]

Semicond. Sci. Technol. (1)

E. Plis, J. Rodriguez, G. Balakrishnan, Y. Sharma, H. Kim, T. Rotter, and S. Krishna, “Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate,” Semicond. Sci. Technol. 25, 085010 (2010).
[Crossref]

Other (5)

P. Capper and C. T. Elliott, eds., Infrared Detectors and Emitters: Materials and Devices, Electronic Materials Series (Springer, 2001), Vol. 8.

E. Theocharous and J. R. Birch, “Detectors for mid- and far-infrared spectrometry: selection and use,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), pp. 349–367.

S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85  nm gate length enhancement and depletion mode InSb quantum well transistors for ultra-high speed and very low power digital logic applications,” in Electron Devices Meeting, IEDM Technical Digest, December5, 2005, pp. 763–766.

A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer, 2006).

The dataset of the research is available at http://dx.doi.org/10.5525/gla.researchdata.554 .

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary material for the manuscript

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Diagram depicting the 3D pixel topography in the arrays: the schematic shows a single element of the FPA with the diode and MESFET fabricated side-by-side to achieve a completed pixel device. (b) The circuit diagram of the 4×4 array architecture illustrating the readout mechanism: the row decoder selects a row by switching its MESFETs to the ON state, so that the multiplexer can then read the photocurrent sequentially from each column.

Fig. 2.
Fig. 2.

Photoresponse spectra obtained using a FTIR spectrometer. Using the addressing architecture, we are able to show the individual spectra from each fabricated pixel in the 4×4 array. The inset shows the superposed peak photoresponse of all pixels.

Fig. 3.
Fig. 3.

(a) Responsivity of a typical pixel in the 4×4 array, with laser illumination at 4.57 μm. (b) A noise spectrum, measured with the RF analyzer without an input signal (red), with only the transimpedance amplifier connected to the analyzer (black), and finally with the amplified signal from the pixel connected to the input to the analyzer (blue). (c) A histogram comparing the specific detectivity of the 16 pixels in the 4×4 array. (d) The signal voltage dependence on the scanning speed, showing that an increase in the frame rate from 15 to 80 fps causes only a small signal loss.

Fig. 4.
Fig. 4.

(a) Schematic of the setup used to carry out imaging experiments. (b) An image of a patterned mask (shown in the figure) obtained by a combination of mechanical and electronic scanning using the 4×4 array. Subimages, including the examples I, II and III, captured electronically, are used to construct the full image.

Fig. 5.
Fig. 5.

Images of the FTIR glow bar source captured with the 8×8 pixel array. The images are taken in sequence, moving the array gradually across the globar spot.

Tables (1)

Tables Icon

Table 1. Characteristic Absorption of Eight Gases in the 3–6  μm Range, Highlighting the Capabilities of Mid-IR Detectors When Used for Gas Sensing [2]