Abstract

Fully exploiting the potential of silicon photonics requires high-performance active devices such as lasers, which can be monolithically integrated in a scalable way. However, direct bandgap III–V semiconductors exhibit a large lattice mismatch and/or strongly differing thermal expansion coefficient with silicon. This makes monolithic integration on silicon without introducing excessive defects in the material extremely difficult. The majority of the methods proposed thus far either are not compatible with further low-cost integration or rely on a special substrate. Here we demonstrate monolithic InGaAs/GaAs single-mode nano-ridge lasers directly grown on a standard (001) 300-mm Si wafer. Exploiting the aspect ratio defect trapping technique, unwanted defects are confined to a narrow trench defined in the silicon substrate. The nano-ridge structures subsequently grown out of these trenches are of high crystalline quality as shown by high-resolution transmission electron microscopy analysis and a strong photoluminescence response. They can be controlled in shape by optimizing the growth conditions, which allows us to minimize substrate leakage and maximize confinement in the InGaAs quantum wells providing optical gain. Distributed feedback lasers were fabricated by defining a first-order grating in the nano-ridge. Under pulsed optical pumping, single-mode lasing with side mode suppression over 28 dB was shown, and precise control of the emission wavelength over 60 nm was achieved. This demonstration proves the high quality of the material and provides a credible road towards a CMOS-compatible platform for high-volume manufacturing of silicon photonic integrated circuits, including laser and amplifier devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum dot lasers for silicon photonics [Invited]

Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, and John E. Bowers
Photon. Res. 3(5) B1-B9 (2015)

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu
Opt. Express 20(20) 22181-22187 (2012)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers

Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Vitaliy G. Dorogan, Mourad Benamara, Yuriy I. Mazur, Gregory J. Salamo, Alwyn Seeds, and Huiyun Liu
Opt. Express 22(10) 11528-11535 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
    [Crossref]
  2. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010).
    [Crossref]
  3. M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
    [Crossref]
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
    [Crossref]
  5. G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
    [Crossref]
  6. K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
    [Crossref]
  7. H. Choi, C. Wang, and N. Karam, “GaAs-based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer,” Appl. Phys. Lett. 59, 2634–2635 (1991).
    [Crossref]
  8. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
    [Crossref]
  9. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
    [Crossref]
  10. Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
    [Crossref]
  11. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
    [Crossref]
  12. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  13. Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106, 072105 (2015).
    [Crossref]
  14. T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
    [Crossref]
  15. A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
    [Crossref]
  16. A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 690–697 (2015).
    [Crossref]
  17. H. Kawanami, “Heteroepitaxial technologies of III-V on Si,” Solar Energy Mater. Solar Cells 66, 479–486 (2001).
    [Crossref]
  18. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  19. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
    [Crossref]
  20. B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
    [Crossref]
  21. J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
    [Crossref]
  22. B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
    [Crossref]
  23. K. Shore and M. Ogura, “Threshold characteristics of microcavity semiconductor lasers,” Opt. Quantum Electron. 24, S209–S213 (1992).
    [Crossref]

2017 (3)

M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
[Crossref]

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

2016 (5)

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

2015 (5)

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106, 072105 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 690–697 (2015).
[Crossref]

2014 (1)

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

2010 (1)

2009 (1)

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

2008 (1)

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

2005 (1)

2003 (1)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

2001 (1)

H. Kawanami, “Heteroepitaxial technologies of III-V on Si,” Solar Energy Mater. Solar Cells 66, 479–486 (2001).
[Crossref]

1996 (1)

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

1992 (1)

K. Shore and M. Ogura, “Threshold characteristics of microcavity semiconductor lasers,” Opt. Quantum Electron. 24, S209–S213 (1992).
[Crossref]

1991 (1)

H. Choi, C. Wang, and N. Karam, “GaAs-based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer,” Appl. Phys. Lett. 59, 2634–2635 (1991).
[Crossref]

Abassi, A.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Baets, R.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Bai, J.

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

Barget, M. R.

M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
[Crossref]

Barla, K.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
[Crossref]

Bauwelinck, J.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Bhattacharya, P.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Bowers, J. E.

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Camacho-Aguilera, R.

Capellini, G.

M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
[Crossref]

Cardile, P.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Carroll, M.

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

Castellano, A.

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Cerutti, L.

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Choi, H.

H. Choi, C. Wang, and N. Karam, “GaAs-based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer,” Appl. Phys. Lett. 59, 2634–2635 (1991).
[Crossref]

Cohen, O.

Dave, U.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

de Groote, A.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

de Koninck, Y.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Deshpande, S.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

Dhoore, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Fang, A. W.

Fitzgerald, E. A.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Frost, T.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

Fu, X.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Garreau, A.

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Gassenq, A.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Gossard, A. C.

Groenert, M. E.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Guo, W.

B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Hak, D.

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Hattasan, N.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Hazari, A.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

Herrick, R. W.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 690–697 (2015).
[Crossref]

Hu, E. L.

Huang, Q.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Huang, X.

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Iwaki, K.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

Jahangir, S.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jones, R.

Jung, D.

Karam, N.

H. Choi, C. Wang, and N. Karam, “GaAs-based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer,” Appl. Phys. Lett. 59, 2634–2635 (1991).
[Crossref]

Kawanami, H.

H. Kawanami, “Heteroepitaxial technologies of III-V on Si,” Solar Energy Mater. Solar Cells 66, 479–486 (2001).
[Crossref]

Keyvaninia, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Kimerling, L. C.

Kumari, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Kunert, B.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
[Crossref]

Kuyken, B.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Langer, R.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
[Crossref]

Lau, K. M.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106, 072105 (2015).
[Crossref]

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Lee, M. L.

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Lelarge, F.

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Li, J.

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

Li, L.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Li, Q.

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106, 072105 (2015).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, A.

Liu, A. Y.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, J.

Lochtefeld, A.

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ma, Z.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Major, C.

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Mechet, P.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Merckling, C.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Mi, Z.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Michel, J.

Mols, Y.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
[Crossref]

Morthier, G.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Muneeb, M.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Narcy, G.

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Ng, K. W.

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106, 072105 (2015).
[Crossref]

Norman, J.

Ogura, M.

K. Shore and M. Ogura, “Threshold characteristics of microcavity semiconductor lasers,” Opt. Quantum Electron. 24, S209–S213 (1992).
[Crossref]

Ohshima, N.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

Ooi, B. S.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

Pak, K.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

Paniccia, M. J.

Pantouvaki, M.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Peters, J.

Petroff, P. M.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 690–697 (2015).
[Crossref]

Pitera, A. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Qin, G.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Ram, R. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Rodriguez, J.

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Roelkens, G.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Rong, H.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Samonji, K.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

Sanchez, D.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Schroeder, T.

M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Shao, H.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Shellenbarger, Z.

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

Shi, Y.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Shin, J.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

Shore, K.

K. Shore and M. Ogura, “Threshold characteristics of microcavity semiconductor lasers,” Opt. Quantum Electron. 24, S209–S213 (1992).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Spuesens, T.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Stark, E.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Subramanian, A.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Sun, X.

Takagi, Y.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tassaert, M.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Tian, B.

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Tournié, E.

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Ueda, O.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 690–697 (2015).
[Crossref]

Uvin, S.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Van Campenhout, J.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

van Gasse, K.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Van Thourhout, D.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Verbist, J.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Virgilio, M.

M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
[Crossref]

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Wan, Y.

Wang, C.

H. Choi, C. Wang, and N. Karam, “GaAs-based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer,” Appl. Phys. Lett. 59, 2634–2635 (1991).
[Crossref]

Wang, R.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Wang, Z.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Yamamoto, Y.

M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
[Crossref]

Yang, J.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Yin, X.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Yonezu, H.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

Zhang, J.

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Zhao, C.

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

APL Photon. (1)

A. Castellano, L. Cerutti, J. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Appl. Phys. Lett. (4)

B. Kunert, W. Guo, Y. Mols, B. Tian, Z. Wang, Y. Shi, D. Van Thourhout, M. Pantouvaki, J. Van Campenhout, R. Langer, and K. Barla, “III/V nano ridge structures for optical applications on patterned 300  mm silicon substrate,” Appl. Phys. Lett. 109, 091101 (2016).
[Crossref]

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100–102 (1996).
[Crossref]

H. Choi, C. Wang, and N. Karam, “GaAs-based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer,” Appl. Phys. Lett. 59, 2634–2635 (1991).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106, 072105 (2015).
[Crossref]

ECS Trans. (1)

B. Kunert, W. Guo, Y. Mols, R. Langer, and K. Barla, “(Invited) integration of III/V hetero-structures by selective area growth on Si for nano-and optoelectronics,” ECS Trans. 75, 409–419 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 690–697 (2015).
[Crossref]

J. Appl. Phys. (3)

J. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, “Defect reduction of GaAs/Si epitaxy by aspect ratio trapping,” J. Appl. Phys. 103, 106102 (2008).
[Crossref]

M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, “The impact of donors on recombination mechanisms in heavily doped Ge/Si layers,” J. Appl. Phys. 121, 245701 (2017).
[Crossref]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[Crossref]

Nano Lett. (2)

T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, “Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon,” Nano Lett. 14, 4535–4541 (2014).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2016).
[Crossref]

Nat. Photonics (3)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III– V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

K. Shore and M. Ogura, “Threshold characteristics of microcavity semiconductor lasers,” Opt. Quantum Electron. 24, S209–S213 (1992).
[Crossref]

Photonics (1)

G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. de Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. van Gasse, J. Verbist, R. Wang, Z. Wang, J. Zhang, J. van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2, 969–1004 (2015).
[Crossref]

Proc. IEEE (1)

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).
[Crossref]

Solar Energy Mater. Solar Cells (1)

H. Kawanami, “Heteroepitaxial technologies of III-V on Si,” Solar Energy Mater. Solar Cells 66, 479–486 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Sketch of the GaAs nano-ridge laser stack. The inclined lines at trench bottom indicate how planar defects and threading dislocations are trapped inside the trench. (b) HAADF-STEM images of the GaAs nano-ridge waveguide. The upper one shows zoomed-in QWs, barriers, and the passivation layer, while the lower high-resolution (HR) TEM shows that defects are trapped in the V-shaped trench. (c) Top view SEM image of nano-ridge array with trench width from 60 to 100 nm. (d) Tilted cross-section SEM image of three 80-nm trench ridges. (e) The first four modes of the nano-ridge waveguide calculated by finite difference eigenmode (FDE) simulation.

Fig. 2.
Fig. 2.

(a) Normalized room-temperature photoluminescence spectra of nano-ridges with trench width (TW) 60, 80, 100, and 120 nm, respectively. (b) Simulation of Bragg grating reflection spectrum for grating period number increasing from N=50 to N=200. The inset shows a longitudinal cut of the simulated configuration.

Fig. 3.
Fig. 3.

SEM of (a) a DFB laser array, (b) the zoomed-in λ/4 phase shift section, and (c) the second-order grating coupler section.

Fig. 4.
Fig. 4.

(a) Room-temperature spectra of a DFB laser under different pump powers (100 nm trench width, 170 nm grating period, and 340 nm second-order grating coupler period). (b) L-L curve on logarithmic and linear (inset) scale of the measured DFB nano-ridge laser. Black circles and solid line represent the experimental data and the rate equations fit, respectively.

Fig. 5.
Fig. 5.

(a) Measured lasing spectra of DFB laser array with grating period 170 nm. (b) Lasing wavelength versus grating period for trench size varying from 60 to 120 nm.

Tables (1)

Tables Icon

Table 1. GaAs Nano-Ridges Parameters Noted in Fig. 1(b)a