Abstract

The Bell basis is a distinctive set of maximally entangled two-particle quantum states that forms the foundation for many quantum protocols such as teleportation, dense coding, and entanglement swapping. While the generation, manipulation, and measurement of two-level quantum states are well understood, the same is not true in higher dimensions. Here we present the experimental generation of a complete set of Bell states in a four-dimensional Hilbert space, comprising 16 orthogonal entangled Bell-like states encoded in the orbital angular momentum of photons. The states are created by the application of generalized high-dimensional Pauli gates on an initial entangled state. Our results pave the way for the application of high-dimensional quantum states in complex quantum protocols such as quantum dense coding.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon spin-orbit entanglement violating a Bell-like inequality

Lixiang Chen and Weilong She
J. Opt. Soc. Am. B 27(6) A7-A10 (2010)

The Polarizing Sagnac Interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing

S. Slussarenko, V. D’Ambrosio, B. Piccirillo, L. Marrucci, and E. Santamato
Opt. Express 18(26) 27205-27216 (2010)

Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement

Xi-Han Li and Shohini Ghose
Opt. Express 24(16) 18388-18398 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
    [Crossref]
  2. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
    [Crossref]
  3. M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
    [Crossref]
  4. D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
    [Crossref]
  5. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
    [Crossref]
  6. M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
    [Crossref]
  7. Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
    [Crossref]
  8. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
    [Crossref]
  9. M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
    [Crossref]
  10. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
    [Crossref]
  11. M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
    [Crossref]
  12. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
    [Crossref]
  13. C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [Crossref]
  14. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
    [Crossref]
  15. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref]
  16. M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “’Event-ready-detectors,’ Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
    [Crossref]
  17. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
    [Crossref]
  18. J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. Boyd, A. Jha, S. Barnett, S. Franke-Arnold, and M. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
    [Crossref]
  19. M. Agnew, J. Z. Salvail, J. Leach, and R. Boyd, “Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses,” Phys. Rev. Lett. 111, 030402 (2013).
    [Crossref]
  20. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  21. M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, “Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes,” Philos. Trans. R. Soc. A 375, 20150442 (2017).
    [Crossref]
  22. M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
    [Crossref]
  23. F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
    [Crossref]
  24. A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).
  25. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
    [Crossref]
  26. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref]
  27. J. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
    [Crossref]
  28. R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
    [Crossref]
  29. M. Erhard, M. Malik, and A. Zeilinger, “A quantum router for high-dimensional entanglement,” Quantum Sci. Technol. 2, 014001 (2017).
    [Crossref]
  30. J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301 (2002).
    [Crossref]
  31. A. Hill, T. Graham, and P. Kwiat, “Hyperdense coding with single photons,” in Frontiers in Optics (2016), p. FW2B.2.
  32. Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
    [Crossref]
  33. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
    [Crossref]
  34. M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, “Experimental GHZ entanglement beyond qubits,” arXiv:1708.03881 (2017).
  35. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
  36. A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
    [Crossref]

2017 (2)

M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, “Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes,” Philos. Trans. R. Soc. A 375, 20150442 (2017).
[Crossref]

M. Erhard, M. Malik, and A. Zeilinger, “A quantum router for high-dimensional entanglement,” Quantum Sci. Technol. 2, 014001 (2017).
[Crossref]

2016 (4)

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

2015 (1)

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

2014 (2)

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

2013 (4)

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

M. Agnew, J. Z. Salvail, J. Leach, and R. Boyd, “Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses,” Phys. Rev. Lett. 111, 030402 (2013).
[Crossref]

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

2011 (2)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

2009 (1)

2008 (1)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

2006 (1)

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

2005 (1)

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

2003 (2)

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
[Crossref]

J. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

2002 (4)

J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301 (2002).
[Crossref]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref]

1993 (2)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “’Event-ready-detectors,’ Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref]

1992 (2)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

Agnew, M.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

M. Agnew, J. Z. Salvail, J. Leach, and R. Boyd, “Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses,” Phys. Rev. Lett. 111, 030402 (2013).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Alexandrescu, A.

J. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

Babazadeh, A.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

Barnett, S.

Barnett, S. M.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

Bourennane, M.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Boyd, R.

M. Agnew, J. Z. Salvail, J. Leach, and R. Boyd, “Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses,” Phys. Rev. Lett. 111, 030402 (2013).
[Crossref]

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. Boyd, A. Jha, S. Barnett, S. Franke-Arnold, and M. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref]

Boyd, R. W.

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Cai, X. D.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Calsamiglia, J.

J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301 (2002).
[Crossref]

Cerf, N. J.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Chen, M. C.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Courtial, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[Crossref]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

Dudley, A.

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

Ekert, A.

M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “’Event-ready-detectors,’ Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref]

Erhard, M.

M. Erhard, M. Malik, and A. Zeilinger, “A quantum router for high-dimensional entanglement,” Quantum Sci. Technol. 2, 014001 (2017).
[Crossref]

M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, “Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes,” Philos. Trans. R. Soc. A 375, 20150442 (2017).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, “Experimental GHZ entanglement beyond qubits,” arXiv:1708.03881 (2017).

Fickler, R.

F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

Forbes, A.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

Franke-Arnold, S.

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. Boyd, A. Jha, S. Barnett, S. Franke-Arnold, and M. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[Crossref]

Giovannini, D.

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

Gisin, N.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Goyal, S.

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

Graham, T.

A. Hill, T. Graham, and P. Kwiat, “Hyperdense coding with single photons,” in Frontiers in Optics (2016), p. FW2B.2.

Gröblacher, S.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

Hill, A.

A. Hill, T. Graham, and P. Kwiat, “Hyperdense coding with single photons,” in Frontiers in Optics (2016), p. FW2B.2.

Horne, M.

M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “’Event-ready-detectors,’ Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref]

Huber, M.

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

Jack, B.

Jennewein, T.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
[Crossref]

Jha, A.

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

Karlsson, A.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Kim, Y.-H.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

Konrad, T.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

Krenn, M.

M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, “Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes,” Philos. Trans. R. Soc. A 375, 20150442 (2017).
[Crossref]

F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, “Experimental GHZ entanglement beyond qubits,” arXiv:1708.03881 (2017).

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

Kwiat, P.

A. Hill, T. Graham, and P. Kwiat, “Hyperdense coding with single photons,” in Frontiers in Optics (2016), p. FW2B.2.

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref]

Lapkiewicz, R.

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

Lavery, M. P.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

Leach, J.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

M. Agnew, J. Z. Salvail, J. Leach, and R. Boyd, “Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses,” Phys. Rev. Lett. 111, 030402 (2013).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. Boyd, A. Jha, S. Barnett, S. Franke-Arnold, and M. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[Crossref]

Li, L.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Liu, N. L.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Lu, C. Y.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Lütkenhaus, N.

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

Mafu, M.

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Malik, M.

M. Erhard, M. Malik, and A. Zeilinger, “A quantum router for high-dimensional entanglement,” Quantum Sci. Technol. 2, 014001 (2017).
[Crossref]

M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, “Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes,” Philos. Trans. R. Soc. A 375, 20150442 (2017).
[Crossref]

F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, “Experimental GHZ entanglement beyond qubits,” arXiv:1708.03881 (2017).

Mattle, K.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref]

McLaren, M.

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Nouroozi, R.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

Padgett, M.

Padgett, M. J.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[Crossref]

Pan, J. W.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
[Crossref]

Pawlowski, M.

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

Petruccione, F.

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

Ramelow, S.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

Ritsch-Marte, M.

Romero, J.

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. Boyd, A. Jha, S. Barnett, S. Franke-Arnold, and M. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009).
[Crossref]

Roux, F. S.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

Salvail, J. Z.

M. Agnew, J. Z. Salvail, J. Leach, and R. Boyd, “Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses,” Phys. Rev. Lett. 111, 030402 (2013).
[Crossref]

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

Schlederer, F.

F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
[Crossref]

Shih, Y.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

Spreeuw, R.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Su, Z. E.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Torner, L.

J. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

Torres, J.

J. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

Vaziri, A.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Vedral, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

Walther, P.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

Wang, F.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

Wang, X. L.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Weihs, G.

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Weinfurter, H.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

Woerdman, J.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

Wu, D.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Zeilinger, A.

M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, “Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes,” Philos. Trans. R. Soc. A 375, 20150442 (2017).
[Crossref]

M. Erhard, M. Malik, and A. Zeilinger, “A quantum router for high-dimensional entanglement,” Quantum Sci. Technol. 2, 014001 (2017).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
[Crossref]

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref]

M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “’Event-ready-detectors,’ Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref]

M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, “Experimental GHZ entanglement beyond qubits,” arXiv:1708.03881 (2017).

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

Zhang, Y.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

Zukowski, M.

M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “’Event-ready-detectors,’ Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref]

Nat. Commun. (1)

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5, 4502 (2014).
[Crossref]

Nat. Photonics (1)

M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nat. Photonics 10, 248–252 (2016).
[Crossref]

Nat. Phys. (2)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011).
[Crossref]

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Nature (3)

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518, 516–519 (2015).
[Crossref]

New J. Phys. (2)

S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006).
[Crossref]

F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A. Zeilinger, “Cyclic transformation of orbital angular momentum modes,” New J. Phys. 18, 043019 (2016).
[Crossref]

Opt. Express (1)

Philos. Trans. R. Soc. A (1)

M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, “Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes,” Philos. Trans. R. Soc. A 375, 20150442 (2017).
[Crossref]

Phys. Rev. A (6)

M. Huber and M. Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Phys. Rev. A 88, 032309 (2013).
[Crossref]

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A 84, 062101 (2011).
[Crossref]

J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301 (2002).
[Crossref]

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

J. Torres, A. Alexandrescu, and L. Torner, “Quantum spiral bandwidth of entangled two-photon states,” Phys. Rev. A 68, 050301 (2003).
[Crossref]

Phys. Rev. Lett. (13)

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[Crossref]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91, 227902 (2003).
[Crossref]

D. Giovannini, J. Romero, J. Leach, A. Dudley, A. Forbes, and M. J. Padgett, “Characterization of high-dimensional entangled systems via mutually unbiased measurements,” Phys. Rev. Lett. 110, 143601 (2013).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[Crossref]

M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger, “Automated search for new quantum experiments,” Phys. Rev. Lett. 116, 090405 (2016).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “’Event-ready-detectors,’ Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

M. Agnew, J. Z. Salvail, J. Leach, and R. Boyd, “Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses,” Phys. Rev. Lett. 111, 030402 (2013).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014).
[Crossref]

Quantum Sci. Technol. (1)

M. Erhard, M. Malik, and A. Zeilinger, “A quantum router for high-dimensional entanglement,” Quantum Sci. Technol. 2, 014001 (2017).
[Crossref]

Sci. Adv. (1)

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

Other (3)

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: concepts and experiments,” arXiv:1702.07299 (2017).

A. Hill, T. Graham, and P. Kwiat, “Hyperdense coding with single photons,” in Frontiers in Optics (2016), p. FW2B.2.

M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, “Experimental GHZ entanglement beyond qubits,” arXiv:1708.03881 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Generating 16 four-dimensional Bell states. (a) The 16 Bell states can be divided into four classes of four states each. Within each class, the states only differ in mode-dependent phases. States from different classes differ by their OAM number. (b) By employing a mode-dependent phase transformation on photon A and a cyclic mode transformation on photon B, the complete set of 16 maximally entangled four-dimensional Bell states can be obtained.

Fig. 2.
Fig. 2.

Experimental setup of 4D Bell states. A laser creates a pair of OAM-entangled photons in a nonlinear crystal (ppKtp) that are deterministically separated with a polarizing beam splitter (PBS). The upper path A includes a Dove prism (DP) that implements mode-dependent phase transformations for different rotation angles. The photons transmitted through the PBS arrive at the OAM sorter (green frame). This sorter contains two DPs with a relative angle of 90°, which results in interference that depends on the parity (odd or even) of the spatial mode. For reasons of stability, the OAM sorter is implemented as a double-path Sagnac interferometer. There, odd modes are transmitted, while even modes are reflected (thus also changing the sign of their OAM). To implement the three cyclic transformations (X, X2, X), only a spiral phase plate (SPP) and a mirror have to be installed in different positions. A spatial light modulator (SLM) together with a single mode fiber (SMF) is used to perform projective measurements.

Fig. 3.
Fig. 3.

Overlap between generated states and ideal Bell states. The overlap of 16 states is separated into four subgraphs as shown in the figure. The x and y axes in the figure represent the experimental and ideal Bell states, respectively. The diagonal elements indicate the fidelity Fexp between the experimentally generated states and the corresponding target states ψmn.

Fig. 4.
Fig. 4.

Fidelity witness. Our 16 states exceed the bound for the overlap with a three-dimensionally entangled state (red line), certifying that they are all (at least) four-dimensionally entangled. The fidelity is classified into four groups (|ψ0n, |ψ1n, |ψ2n, |ψ3n) in the figure. The error is calculated using Monte Carlo simulation, and the red line denotes the theoretical bound for four-dimensional entanglement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

|ψABmn=1Dk=0D1ei2πDnk|kA|kmB,
|Ψ==+c|A|B,
|ΨDP(α)|Ψ=12{2,1,0,1}ei2lα|A|B.