Abstract

Absorption of light is directly associated with dissipative processes in a material. In suitably tailored resonators, a specific level of dissipation can support coherent perfect absorption, the time-reversed analogue of lasing, which enables total absorption and zero scattering in open cavities. On the contrary, the scattering zeros of lossless objects strictly occur at complex frequencies. While usually considered nonphysical due to their divergent response in time, these zeros play a crucial role in the overall scattering dispersion. Here, we introduce the concept of coherent virtual absorption, accessing these modes by temporally shaping the incident waveform. We show that engaging these complex zeros enables storing and releasing the electromagnetic energy at will within a lossless structure for arbitrary amounts of time, under the control of the impinging field. The effect is robust with respect to inevitable material dissipation and can be realized in systems with any number of input ports. The observed effect may have important implications for flexible control of light propagation and storage, low-energy memory, and optical modulation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Total internal reflection and evanescent gain

Jon Olav Grepstad and Johannes Skaar
Opt. Express 19(22) 21404-21418 (2011)

Lasing induced by resonant absorption

I. A. Nechepurenko, D. G. Baranov, and A. V. Dorofeenko
Opt. Express 23(16) 20394-20401 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  2. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. B 20, 569–572 (2003).
    [Crossref]
  3. V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
    [Crossref]
  4. V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
    [Crossref]
  5. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref]
  6. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
    [Crossref]
  7. J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
    [Crossref]
  8. A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. 528, 537–542 (2016).
    [Crossref]
  9. D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
    [Crossref]
  10. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
    [Crossref]
  11. F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
    [Crossref]
  12. S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
    [Crossref]
  13. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
    [Crossref]
  14. R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
    [Crossref]
  15. M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
    [Crossref]
  16. H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
    [Crossref]
  17. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  18. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
    [Crossref]
  19. Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
    [Crossref]
  20. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
    [Crossref]
  21. R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32, 3107–3109 (2007).
    [Crossref]
  22. D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
    [Crossref]
  23. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
    [Crossref]
  24. T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
    [Crossref]

2017 (2)

D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
[Crossref]

D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

2016 (4)

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. 528, 537–542 (2016).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

2015 (1)

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

2014 (2)

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
[Crossref]

2013 (2)

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

2012 (3)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref]

2010 (1)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

2008 (1)

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

2007 (2)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref]

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32, 3107–3109 (2007).
[Crossref]

2006 (1)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. B 20, 569–572 (2003).
[Crossref]

1999 (1)

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[Crossref]

1993 (1)

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
[Crossref]

Ahn, J.

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[Crossref]

Alu, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
[Crossref]

Alù, A.

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Andrews, A. M.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Baranov, D. G.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
[Crossref]

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. 528, 537–542 (2016).
[Crossref]

Bonod, N.

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Boudarham, G.

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

Bucksbaum, P. H.

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[Crossref]

Cao, H.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Capasso, F.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Carminati, R.

Chai, Z.

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

Chong, Y.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref]

Chong, Y. D.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
[Crossref]

de Rosny, J.

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32, 3107–3109 (2007).
[Crossref]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref]

Detz, H.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Fan, S.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. B 20, 569–572 (2003).
[Crossref]

Fink, M.

R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the time reversal cavity for electromagnetic fields,” Opt. Lett. 32, 3107–3109 (2007).
[Crossref]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref]

Gansch, R.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Ge, L.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Genevet, P.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Gong, Q.

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

Grigoriev, V.

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

Grudinin, I. S.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Haus, H.

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Hu, X.

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

Ignatov, A. I.

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. 528, 537–542 (2016).
[Crossref]

Ilchenko, V. S.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. B 20, 569–572 (2003).
[Crossref]

Kalchmair, S.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Koh, G. M.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

Krasnok, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
[Crossref]

Lannebère, S.

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Lerosey, G.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref]

Loncar, M.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

MacDonald, K. F.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Magnusson, R.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

Maleki, L.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Monticone, F.

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Nechepurenko, I. A.

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. 528, 537–542 (2016).
[Crossref]

Niu, X.

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

Noh, H.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref]

Pierrat, R.

Powell, D. A.

D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

Rabitz, H.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
[Crossref]

Rolly, B.

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

Schrenk, W.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Shegai, T.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
[Crossref]

Silveirinha, M. G.

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Song, S. H.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Stout, B.

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

Strasser, G.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Suh, W.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. B 20, 569–572 (2003).
[Crossref]

Tahri, A.

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Varault, S.

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

Wang, F.

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

Warren, W. S.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
[Crossref]

Weinacht, T. C.

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[Crossref]

Wenger, J.

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

Xie, J.

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

Yoon, J. W.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

Zederbauer, T.

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Zhang, J.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Zheludev, N. I.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Adv. Opt. Mater. (1)

Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2016).
[Crossref]

Ann. Phys. (1)

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. 528, 537–542 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. B 20, 569–572 (2003).
[Crossref]

Light Sci Appl. (1)

R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, and G. Strasser, “Measurement of bound states in the continuum by a detector embedded in a photonic crystal,” Light Sci Appl. 5, e16147 (2016).
[Crossref]

Light Sci. Appl. (1)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Nat. Commun. (1)

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Nat. Rev. Mater. (2)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

D. G. Baranov, A. Krasnok, T. Shegai, A. Alu, and Y. D. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2, 17064 (2017).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (4)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
[Crossref]

V. Grigoriev, S. Varault, G. Boudarham, B. Stout, J. Wenger, and N. Bonod, “Singular analysis of fano resonances in plasmonic nanostructures,” Phys. Rev. A 88, 063805 (2013).
[Crossref]

V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger, and N. Bonod, “Optimization of resonant effects in nanostructures via Weierstrass factorization,” Phys. Rev. A 88, 011803 (2013).
[Crossref]

Phys. Rev. Appl. (1)

D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

Phys. Rev. Lett. (5)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

Science (2)

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
[Crossref]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref]

Other (1)

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic geometry of the problem: a planar dielectric slab of thickness L is illuminated by two normally incident waves of increasing amplitudes from both sides. (b) S-matrix eigenvalue zeros of a nonmagnetic planar slab with refractive index n=3 for normal incidence. The plus and minus signs refer to zeros of symmetric and antisymmetric modes of the slab, respectively.

Fig. 2.
Fig. 2.

Demonstration of coherent virtual absorption in a one-dimensional lossless system. (a) The scattered (solid green curve) field by the planar slab in Fig. 1, upon illumination with an exponentially growing field (dashed red curve) matching the complex-frequency scattering zero. The exponential growth stops at ωt=0, marking the kick-off for output fields. (b) The electromagnetic field energy stored in the dielectric slab as a function of time for the incident pulse shown in (a). (c, d) The electric field intensity profile (c) exactly at ωt=0, and (d) during re-radiation of the stored energy, ωt=15.

Fig. 3.
Fig. 3.

(a) Scattering of exponential (orange) and Gaussian (cyan) pulse from the dielectric slab. The plot shows the total scattered power integrated at negative times ωt0 normalized to the total incident power as a function of the incident pulse time constant. (b) The total scattering (normalized by the instantaneous value of the incident intensity) of a virtually absorbing pulse as a function of the relative phase between two incident waves. (c) The corresponding electric field intensity profile at ωt=0 upon illumination with two waves with π phase difference.

Fig. 4.
Fig. 4.

(a) Location of the S-matrix zeros of a dielectric cylinder with relative refractive index n=2 and radius R for TM m=0 cylindrical wave excitation. The inset shows the schematic geometry of the problem. (b, c) The electric field intensity profile (b) right before interrupting the exponential growth ωt=0, and (c) during re-radiation of the stored energy at ωt=20. The incident fields are subtracted from the total fields for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(brbl)=(rttr)(aral),
sm=nJm(nk0R)Hm(2)(k0R)n0Jm(nk0R)Hm(2)(k0R)Jm(nk0R)Hm(1)(k0R)nJm(nk0R)Hm(1)(k0R),