Abstract

High-resolution imaging of optical resonator modes is a key step in the development and characterization of nanophotonic devices. Many subwavelength mode-imaging techniques have been developed using optical and electron beam excitation—each with its own limitations in spectral and spatial resolution. Here, we report a 2D imaging technique using a pulsed, low-energy focused ion beam of Li+ to probe the near-surface fields inside photonic resonators. The ion beam locally modifies the resonator structure, causing temporally varying spectroscopic shifts of the resonator. We demonstrate this imaging technique on several optical modes of silicon microdisk resonators by rastering the ion beam across the disk surface and extracting the maximum mode shift at the location of each ion pulse. A small shift caused by ion-beam heating is also observed and is independently extracted to directly measure the thermal response of the device. This technique enables visualization of the splitting of degenerate modes into spatially resolved standing waves and permits persistent optical mode editing. Ion-beam probing enables minimally perturbative, in operando imaging of nanophotonic devices with high resolution and speed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [Invited]

Felix von Cube, Stephan Irsen, Jens Niegemann, Christian Matyssek, Wolfram Hergert, Kurt Busch, and Stefan Linden
Opt. Mater. Express 1(5) 1009-1018 (2011)

Control of emission spectra in quantum dot microdisk/microring lasers

N.V. Kryzhanovskaya, I.S. Mukhin, E.I. Moiseev, I.I. Shostak, A.A. Bogdanov, A.M. Nadtochiy, M.V. Maximov, A.E. Zhukov, M.M. Kulagina, K.A. Vashanova, Yu.M. Zadiranov, S.I. Troshkov, A.A. Lipovskii, and A. Mintairov
Opt. Express 22(21) 25782-25787 (2014)

25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator

Michael Waldow, Tobias Plötzing, Martin Gottheil, Michael Först, Jens Bolten, Thorsten Wahlbrink, and Heinrich Kurz
Opt. Express 16(11) 7693-7702 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Stern, I. Goykhman, B. Desiatov, and U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37, 1313–1315 (2012).
    [Crossref]
  2. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
    [Crossref]
  3. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
    [Crossref]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  5. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 168–240 (2015).
    [Crossref]
  6. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
    [Crossref]
  7. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Mapping whispering-gallery modes in microspheres with a near-field probe,” Opt. Lett. 20, 1515–1517 (1995).
    [Crossref]
  8. S. Götzinger, S. Demmerer, O. Benson, and V. Sandoghdar, “Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe,” J. Microsc. 202, 117–121 (2001).
    [Crossref]
  9. S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp, A. Forchel, and V. Sandoghdar, “Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity,” Opt. Express 15, 17214–17220 (2007).
    [Crossref]
  10. N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
    [Crossref]
  11. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
    [Crossref]
  12. N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
    [Crossref]
  13. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
    [Crossref]
  14. F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
    [Crossref]
  15. R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
    [Crossref]
  16. R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
    [Crossref]
  17. N. Yamamoto, K. Araya, and F. J. G. de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
    [Crossref]
  18. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
    [Crossref]
  19. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7, 2843–2846 (2007).
    [Crossref]
  20. M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
    [Crossref]
  21. F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
    [Crossref]
  22. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
    [Crossref]
  23. S. Choi, T.-T. Cuong, M. R. Phillips, and I. Aharonovich, “Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 103, 171102 (2013).
    [Crossref]
  24. B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
    [Crossref]
  25. J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
    [Crossref]
  26. B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462, 902–906 (2009).
    [Crossref]
  27. A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science 335, 59–64 (2012).
    [Crossref]
  28. O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
    [Crossref]
  29. M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
    [Crossref]
  30. P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
    [Crossref]
  31. K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
    [Crossref]
  32. A. A. Bogdanov, I. S. Mukhin, N. V. Kryzhanovskaya, M. V. Maximov, Z. F. Sadrieva, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, E. I. Moiseev, Y. V. Kudashova, and A. E. Zhukov, “Mode selection in InAs quantum dot microdisk lasers using focused ion beam technique,” Opt. Lett. 40, 4022–4025 (2015).
    [Crossref]
  33. B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
    [Crossref]
  34. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
    [Crossref]
  35. T. Michels, I. W. Rangelow, and V. Aksyuk, “Fabrication process for an optomechanical transducer platform with integrated actuation,” J. Res. Natl. Inst. Stand. Technol. 121, 507–536 (2016).
    [Crossref]
  36. J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
    [Crossref]
  37. B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, “Nanoscale focused ion beam from laser-cooled lithium atoms,” New J. Phys. 13, 103035 (2011).
    [Crossref]
  38. K. A. Twedt, L. Chen, and J. J. McClelland, “Scanning ion microscopy with low energy lithium ions,” Ultramicroscopy 142, 24–31 (2014).
    [Crossref]
  39. E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, “Thermal relaxation of ion-irradiation damage in graphite,” Phys. Rev. B 47, 11143–11148 (1993).
    [Crossref]
  40. G. S. Was, Fundamentals of Radiation Materials Science (Springer, 2017).
  41. J. Ziegler, J. Biersack, and M. Ziegler, SRIM—The Stopping and Range of Ions in Matter (SRIM, 2008).
  42. J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett. 40, 172–174 (1982).
    [Crossref]
  43. P. K. Giri, V. Raineri, G. Franzo, and E. Rimini, “Mechanism of swelling in low-energy ion-irradiated silicon,” Phys. Rev. B 65, 012110 (2001).
    [Crossref]
  44. V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
    [Crossref]
  45. P. K. Giri, “Studies on the surface swelling of ion-irradiated silicon: role of defects,” Mater. Sci. Eng. B 121, 238–243 (2005).
    [Crossref]
  46. A. Jain and K. E. Goodson, “Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method,” J. Heat Transfer 130, 102402 (2008).
    [Crossref]
  47. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
    [Crossref]
  48. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22, 3098–3104 (2014).
    [Crossref]
  49. L. Stern, A. Naiman, G. Keinan, N. Mazurski, M. Grajower, and U. Levy, “Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor,” Optica 4, 1–7 (2017).
    [Crossref]
  50. L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96, 5947–5976 (2004).
    [Crossref]
  51. B. Knuffman, A. V. Steele, and J. J. McClelland, “Cold atomic beam ion source for focused ion beam applications,” J. Appl. Phys. 114, 044303 (2013).
    [Crossref]

2017 (2)

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

L. Stern, A. Naiman, G. Keinan, N. Mazurski, M. Grajower, and U. Levy, “Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor,” Optica 4, 1–7 (2017).
[Crossref]

2016 (6)

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

T. Michels, I. W. Rangelow, and V. Aksyuk, “Fabrication process for an optomechanical transducer platform with integrated actuation,” J. Res. Natl. Inst. Stand. Technol. 121, 507–536 (2016).
[Crossref]

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
[Crossref]

2015 (4)

2014 (4)

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22, 3098–3104 (2014).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

K. A. Twedt, L. Chen, and J. J. McClelland, “Scanning ion microscopy with low energy lithium ions,” Ultramicroscopy 142, 24–31 (2014).
[Crossref]

2013 (3)

S. Choi, T.-T. Cuong, M. R. Phillips, and I. Aharonovich, “Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 103, 171102 (2013).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

B. Knuffman, A. V. Steele, and J. J. McClelland, “Cold atomic beam ion source for focused ion beam applications,” J. Appl. Phys. 114, 044303 (2013).
[Crossref]

2012 (4)

L. Stern, I. Goykhman, B. Desiatov, and U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37, 1313–1315 (2012).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science 335, 59–64 (2012).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

2011 (2)

B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, “Nanoscale focused ion beam from laser-cooled lithium atoms,” New J. Phys. 13, 103035 (2011).
[Crossref]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref]

2010 (3)

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

2009 (2)

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462, 902–906 (2009).
[Crossref]

2008 (3)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

A. Jain and K. E. Goodson, “Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method,” J. Heat Transfer 130, 102402 (2008).
[Crossref]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

2007 (3)

S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp, A. Forchel, and V. Sandoghdar, “Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity,” Opt. Express 15, 17214–17220 (2007).
[Crossref]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7, 2843–2846 (2007).
[Crossref]

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

2005 (3)

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

P. K. Giri, “Studies on the surface swelling of ion-irradiated silicon: role of defects,” Mater. Sci. Eng. B 121, 238–243 (2005).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]

2004 (2)

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref]

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96, 5947–5976 (2004).
[Crossref]

2002 (1)

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

2001 (3)

S. Götzinger, S. Demmerer, O. Benson, and V. Sandoghdar, “Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe,” J. Microsc. 202, 117–121 (2001).
[Crossref]

N. Yamamoto, K. Araya, and F. J. G. de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

P. K. Giri, V. Raineri, G. Franzo, and E. Rimini, “Mechanism of swelling in low-energy ion-irradiated silicon,” Phys. Rev. B 65, 012110 (2001).
[Crossref]

2000 (1)

V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
[Crossref]

1995 (1)

1993 (1)

E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, “Thermal relaxation of ion-irradiation damage in graphite,” Phys. Rev. B 47, 11143–11148 (1993).
[Crossref]

1982 (1)

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett. 40, 172–174 (1982).
[Crossref]

Aeschlimann, M.

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
[Crossref]

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Aharonovich, I.

S. Choi, T.-T. Cuong, M. R. Phillips, and I. Aharonovich, “Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 103, 171102 (2013).
[Crossref]

Ahmed, Z.

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Akimov, A. V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Aksyuk, V.

T. Michels, I. W. Rangelow, and V. Aksyuk, “Fabrication process for an optomechanical transducer platform with integrated actuation,” J. Res. Natl. Inst. Stand. Technol. 121, 507–536 (2016).
[Crossref]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref]

Aksyuk, V. A.

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

Alkorta, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Andreyev, O.

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Araya, K.

N. Yamamoto, K. Araya, and F. J. G. de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

Asari, E.

E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, “Thermal relaxation of ion-irradiation damage in graphite,” Phys. Rev. B 47, 11143–11148 (1993).
[Crossref]

Balet, L.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Bao, W.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Barbolla, J.

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96, 5947–5976 (2004).
[Crossref]

Bargioni, A. W.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Barwick, B.

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462, 902–906 (2009).
[Crossref]

Bauer, M.

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Beggs, D. M.

B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
[Crossref]

Benson, O.

S. Götzinger, S. Demmerer, O. Benson, and V. Sandoghdar, “Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe,” J. Microsc. 202, 117–121 (2001).
[Crossref]

Biersack, J.

J. Ziegler, J. Biersack, and M. Ziegler, SRIM—The Stopping and Range of Ions in Matter (SRIM, 2008).

Bogdanov, A. A.

Brenny, B. J. M.

B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
[Crossref]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Bruck, R.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Buchler, B. C.

S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp, A. Forchel, and V. Sandoghdar, “Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity,” Opt. Express 15, 17214–17220 (2007).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

Caselli, N.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

Chen, L.

K. A. Twedt, L. Chen, and J. J. McClelland, “Scanning ion microscopy with low energy lithium ions,” Ultramicroscopy 142, 24–31 (2014).
[Crossref]

Chen, W.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Choi, S.

S. Choi, T.-T. Cuong, M. R. Phillips, and I. Aharonovich, “Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 103, 171102 (2013).
[Crossref]

Cinchetti, M.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Coffa, S.

V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
[Crossref]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Colocci, M.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Cuong, T.-T.

S. Choi, T.-T. Cuong, M. R. Phillips, and I. Aharonovich, “Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 103, 171102 (2013).
[Crossref]

Davanco, M.

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

Davanço, M.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref]

de Abajo, F. J. G.

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

N. Yamamoto, K. Araya, and F. J. G. de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

de Leon, N. P.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7, 2843–2846 (2007).
[Crossref]

Demmerer, S.

S. Götzinger, S. Demmerer, O. Benson, and V. Sandoghdar, “Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe,” J. Microsc. 202, 117–121 (2001).
[Crossref]

Desiatov, B.

Dubreuil, N.

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

Everitt, H. O.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Fan, J.

Feist, J.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Fiore, A.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Flannigan, D. J.

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462, 902–906 (2009).
[Crossref]

Forchel, A.

Foreman, M. R.

Francardi, M.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Franzo, G.

P. K. Giri, V. Raineri, G. Franzo, and E. Rimini, “Mechanism of swelling in low-energy ion-irradiated silicon,” Phys. Rev. B 65, 012110 (2001).
[Crossref]

Fredrickson, J. E.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett. 40, 172–174 (1982).
[Crossref]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Gardes, F. Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Gerardino, A.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Giri, P. K.

P. K. Giri, “Studies on the surface swelling of ion-irradiated silicon: role of defects,” Mater. Sci. Eng. B 121, 238–243 (2005).
[Crossref]

P. K. Giri, V. Raineri, G. Franzo, and E. Rimini, “Mechanism of swelling in low-energy ion-irradiated silicon,” Phys. Rev. B 65, 012110 (2001).
[Crossref]

Gloskovskii, A.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Goodson, K. E.

A. Jain and K. E. Goodson, “Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method,” J. Heat Transfer 130, 102402 (2008).
[Crossref]

Götzinger, S.

S. Götzinger, S. Demmerer, O. Benson, and V. Sandoghdar, “Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe,” J. Microsc. 202, 117–121 (2001).
[Crossref]

Goykhman, I.

Grajower, M.

Grundmann, M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref]

Gullans, M.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Gurioli, M.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Gyulai, J.

V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
[Crossref]

Hafezi, M.

Halas, N. J.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Hare, J.

Haroche, S.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Houdré, R.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Hu, Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Hubler, G. K.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett. 40, 172–174 (1982).
[Crossref]

Intonti, F.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Jain, A.

A. Jain and K. E. Goodson, “Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method,” J. Heat Transfer 130, 102402 (2008).
[Crossref]

Kafesaki, M.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]

Kaidashev, E. M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref]

Kamp, M.

Kawabe, T.

E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, “Thermal relaxation of ion-irradiation damage in graphite,” Phys. Rev. B 47, 11143–11148 (1993).
[Crossref]

Keinan, G.

Kilbane, D.

King, N. S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Kitajima, M.

E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, “Thermal relaxation of ion-irradiation damage in graphite,” Phys. Rev. B 47, 11143–11148 (1993).
[Crossref]

Knight, J. C.

Knight, M. W.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Knuffman, B.

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

B. Knuffman, A. V. Steele, and J. J. McClelland, “Cold atomic beam ion source for focused ion beam applications,” J. Appl. Phys. 114, 044303 (2013).
[Crossref]

B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, “Nanoscale focused ion beam from laser-cooled lithium atoms,” New J. Phys. 13, 103035 (2011).
[Crossref]

Kociak, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Koenderink, A. F.

S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp, A. Forchel, and V. Sandoghdar, “Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity,” Opt. Express 15, 17214–17220 (2007).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Kramer, J.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Kreiter, M.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Kryzhanovskaya, N. V.

Kudashova, Y. V.

Kuipers, L.

B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

Kulagina, M. M.

Kuttge, M.

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7, 2843–2846 (2007).
[Crossref]

La China, F.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Lalanne, P.

Lefèvre-Seguin, V.

Levy, U.

Li, L.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Li, L. H.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Liertzer, M.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Linfield, E. H.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Lipovskii, A. A.

Liu, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Liz-Marzán, L. M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Lorenz, M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref]

Lukin, M. D.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Marqués, L. A.

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96, 5947–5976 (2004).
[Crossref]

Mashanovich, G. Z.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Maximov, M. V.

Mazurski, N.

McClelland, J. J.

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

K. A. Twedt, L. Chen, and J. J. McClelland, “Scanning ion microscopy with low energy lithium ions,” Ultramicroscopy 142, 24–31 (2014).
[Crossref]

B. Knuffman, A. V. Steele, and J. J. McClelland, “Cold atomic beam ion source for focused ion beam applications,” J. Appl. Phys. 114, 044303 (2013).
[Crossref]

B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, “Nanoscale focused ion beam from laser-cooled lithium atoms,” New J. Phys. 13, 103035 (2011).
[Crossref]

Melchior, P.

Miao, H.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref]

Michels, T.

T. Michels, I. W. Rangelow, and V. Aksyuk, “Fabrication process for an optomechanical transducer platform with integrated actuation,” J. Res. Natl. Inst. Stand. Technol. 121, 507–536 (2016).
[Crossref]

Mills, B.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Moiseev, E. I.

Monat, C.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Mujumdar, S.

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Mukhin, I. S.

Muskens, O. L.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Naiman, A.

Nakamura, K. G.

E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, “Thermal relaxation of ion-irradiation damage in graphite,” Phys. Rev. B 47, 11143–11148 (1993).
[Crossref]

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Nelayah, J.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Nepjiko, S. A.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Nobis, T.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref]

Nordlander, P.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Orloff, J.

B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, “Nanoscale focused ion beam from laser-cooled lithium atoms,” New J. Phys. 13, 103035 (2011).
[Crossref]

Özdemir, S. K.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Pagliano, F.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

Passaro, V. M. N.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Pelaz, L.

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96, 5947–5976 (2004).
[Crossref]

Peng, B.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Phillips, M. R.

S. Choi, T.-T. Cuong, M. R. Phillips, and I. Aharonovich, “Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 103, 171102 (2013).
[Crossref]

Polman, A.

B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
[Crossref]

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
[Crossref]

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7, 2843–2846 (2007).
[Crossref]

Porath, R.

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Rahm, A.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref]

Raimond, J. M.

Raineri, V.

P. K. Giri, V. Raineri, G. Franzo, and E. Rimini, “Mechanism of swelling in low-energy ion-irradiated silicon,” Phys. Rev. B 65, 012110 (2001).
[Crossref]

V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
[Crossref]

Rakher, M. T.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref]

Rangelow, I. W.

T. Michels, I. W. Rangelow, and V. Aksyuk, “Fabrication process for an optomechanical transducer platform with integrated actuation,” J. Res. Natl. Inst. Stand. Technol. 121, 507–536 (2016).
[Crossref]

Reed, G. T.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Riboli, F.

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Rimini, E.

P. K. Giri, V. Raineri, G. Franzo, and E. Rimini, “Mechanism of swelling in low-energy ion-irradiated silicon,” Phys. Rev. B 65, 012110 (2001).
[Crossref]

V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
[Crossref]

Rochholz, H.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Rotenberg, N.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

Rotter, S.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Sadrieva, Z. F.

Sandoghdar, V.

S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp, A. Forchel, and V. Sandoghdar, “Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity,” Opt. Express 15, 17214–17220 (2007).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]

S. Götzinger, S. Demmerer, O. Benson, and V. Sandoghdar, “Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe,” J. Microsc. 202, 117–121 (2001).
[Crossref]

J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Mapping whispering-gallery modes in microspheres with a near-field probe,” Opt. Lett. 20, 1515–1517 (1995).
[Crossref]

Scharte, M.

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Schmidt, O.

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Schnell, M.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

Schönhense, G.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Schwarzkopf, A.

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

Spitzer, W. G.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett. 40, 172–174 (1982).
[Crossref]

Srinivasan, K.

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref]

Steele, A. V.

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

B. Knuffman, A. V. Steele, and J. J. McClelland, “Cold atomic beam ion source for focused ion beam applications,” J. Appl. Phys. 114, 044303 (2013).
[Crossref]

B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, “Nanoscale focused ion beam from laser-cooled lithium atoms,” New J. Phys. 13, 103035 (2011).
[Crossref]

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Stern, L.

Strouse, G. F.

Sünner, T.

Swaim, J. D.

Szilágyi, E.

V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
[Crossref]

Taverna, D.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Taylor, J. M.

Tencé, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Thompson, J. D.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Thomson, D. J.

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3, 396–402 (2016).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Tiecke, T. G.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Troia, B.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

Twedt, K. A.

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

K. A. Twedt, L. Chen, and J. J. McClelland, “Scanning ion microscopy with low energy lithium ions,” Ultramicroscopy 142, 24–31 (2014).
[Crossref]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

van der Veen, R. M.

A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science 335, 59–64 (2012).
[Crossref]

van der Wel, R. E. C.

B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
[Crossref]

Vesseur, E. J.

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7, 2843–2846 (2007).
[Crossref]

Vignolini, S.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Vinattieri, A.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Vollmer, F.

Vuletic, V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Vynck, K.

Waddell, C. N.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett. 40, 172–174 (1982).
[Crossref]

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Was, G. S.

G. S. Was, Fundamentals of Radiation Materials Science (Springer, 2017).

Wiemann, C.

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Wiersig, J.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Wiersma, D. S.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Wilson, T. M.

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

Xu, H.

Yamamoto, N.

N. Yamamoto, K. Araya, and F. J. G. de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

Yang, L.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Yilmaz, H.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Yurtsever, A.

A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science 335, 59–64 (2012).
[Crossref]

Zadiranov, Y. M.

Zewail, A. H.

A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science 335, 59–64 (2012).
[Crossref]

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462, 902–906 (2009).
[Crossref]

Zhao, G.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Zhukov, A. E.

Zibrov, A. S.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Ziegler, J.

J. Ziegler, J. Biersack, and M. Ziegler, SRIM—The Stopping and Range of Ions in Matter (SRIM, 2008).

Ziegler, M.

J. Ziegler, J. Biersack, and M. Ziegler, SRIM—The Stopping and Range of Ions in Matter (SRIM, 2008).

Zinoni, C.

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

Zou, J.

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

ACS Photon. (1)

B. J. M. Brenny, D. M. Beggs, R. E. C. van der Wel, L. Kuipers, and A. Polman, “Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides,” ACS Photon. 3, 2112–2121 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B 74, 223–227 (2002).
[Crossref]

Appl. Phys. Lett. (3)

S. Choi, T.-T. Cuong, M. R. Phillips, and I. Aharonovich, “Observation of whispering gallery modes from hexagonal ZnO microdisks using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 103, 171102 (2013).
[Crossref]

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett. 40, 172–174 (1982).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101, 041905 (2012).
[Crossref]

Appl. Phys. Rev. (1)

J. J. McClelland, A. V. Steele, B. Knuffman, K. A. Twedt, A. Schwarzkopf, and T. M. Wilson, “Bright focused ion beam sources based on laser-cooled atoms,” Appl. Phys. Rev. 3, 011302 (2016).
[Crossref]

J. Appl. Phys. (2)

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96, 5947–5976 (2004).
[Crossref]

B. Knuffman, A. V. Steele, and J. J. McClelland, “Cold atomic beam ion source for focused ion beam applications,” J. Appl. Phys. 114, 044303 (2013).
[Crossref]

J. Heat Transfer (1)

A. Jain and K. E. Goodson, “Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method,” J. Heat Transfer 130, 102402 (2008).
[Crossref]

J. Microsc. (1)

S. Götzinger, S. Demmerer, O. Benson, and V. Sandoghdar, “Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe,” J. Microsc. 202, 117–121 (2001).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

T. Michels, I. W. Rangelow, and V. Aksyuk, “Fabrication process for an optomechanical transducer platform with integrated actuation,” J. Res. Natl. Inst. Stand. Technol. 121, 507–536 (2016).
[Crossref]

Light Sci. Appl. (1)

N. Caselli, F. Intonti, F. La China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, and M. Gurioli, “Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes,” Light Sci. Appl. 4, e326 (2015).
[Crossref]

Mater. Sci. Eng. B (1)

P. K. Giri, “Studies on the surface swelling of ion-irradiated silicon: role of defects,” Mater. Sci. Eng. B 121, 238–243 (2005).
[Crossref]

Nano Lett. (5)

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10, 3524–3528 (2010).
[Crossref]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7, 2843–2846 (2007).
[Crossref]

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12, 6000–6004 (2012).
[Crossref]

Nat. Photonics (3)

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2014).
[Crossref]

K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, “Imaging nanophotonic modes of microresonators using a focused ion beam,” Nat. Photonics 10, 35–39 (2016).
[Crossref]

Nat. Phys. (1)

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Nature (3)

B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462, 902–906 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

New J. Phys. (1)

B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, “Nanoscale focused ion beam from laser-cooled lithium atoms,” New J. Phys. 13, 103035 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (2)

Phys. Rev. B (5)

P. K. Giri, V. Raineri, G. Franzo, and E. Rimini, “Mechanism of swelling in low-energy ion-irradiated silicon,” Phys. Rev. B 65, 012110 (2001).
[Crossref]

V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, “He-vacancy interactions in Si and their influence on bubble formation and evolution,” Phys. Rev. B 61, 937–945 (2000).
[Crossref]

E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, “Thermal relaxation of ion-irradiation damage in graphite,” Phys. Rev. B 47, 11143–11148 (1993).
[Crossref]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78, 041401 (2008).
[Crossref]

N. Yamamoto, K. Araya, and F. J. G. de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

Phys. Rev. Lett. (3)

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[Crossref]

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Rev. Mod. Phys. (1)

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

Science (3)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science 335, 59–64 (2012).
[Crossref]

Ultramicroscopy (1)

K. A. Twedt, L. Chen, and J. J. McClelland, “Scanning ion microscopy with low energy lithium ions,” Ultramicroscopy 142, 24–31 (2014).
[Crossref]

Other (2)

G. S. Was, Fundamentals of Radiation Materials Science (Springer, 2017).

J. Ziegler, J. Biersack, and M. Ziegler, SRIM—The Stopping and Range of Ions in Matter (SRIM, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Ion pulse imaging of microdisk resonator modes. (a) The silicon microdisk (10 μm diameter) is housed in a Li+ FIB vacuum chamber with optical fibers connecting the interrogating laser and photodiode to the device. The ion beam is scanned across the resonator mode (dashed line) and perturbs small volumes in the device near the disk surface. The resonator’s mode intensity (shown in cross section) varies both radially and through the device thickness. (b) Spectroscopy of a zeroth-order transverse magnetic (TM) mode is shown with Q20,000 at λ1523  nm. The ion pulses incident on the microdisk shift the resonance to a longer wavelength, and this shift is read out by tuning the laser (dashed line) to the low-frequency side of the resonance and observing the time-varying change in the optical transmission of the device. (c) The change in transmission (blue lines) is shown for a series of 0.5  ms ion pulses (blue bands) incident near the mode maximum, and the absolute magnitude of the spectral shift can be calculated from the transmission measurement in (b). Between each ion pulse, the laser is adjusted (orange band) to a nominal absorption value on the side of the resonance by turning on a slow feedback circuit.

Fig. 2.
Fig. 2.

Optical and thermal response of the microdisk resonator to ion dose. (a) A cross section of the optical mode intensity (color scale) for the zeroth radial order mode shown in Fig. 1(b) is shown relative to the data in (b) and (c). (b) The ion beam is scanned radially across the edge of the microdisk with a series of 0.5  ms ion pulses, and the time-varying shift (blue lines) is recorded. Insets show the thermal response to the ion pulses (blue bands) off the disk, where no response is observed [inset (i)], and on the disk, where the overlap with the optical mode is minimal and only the thermal response of the resonator is observed [inset (ii)]. Each inset trace (blue points) is an average of eight consecutive ion pulses with fitting for the thermal shift (dashed line) superposed. (c) The maximum optical shifts (closed circles) and thermal shifts (open circles) are plotted as a function of beam position. Each value is extracted from fitting the time-varying response to Eq. (1), as shown in inset (iii). The optical response is compared to a numerical simulation of the optical mode intensity at the disk surface (red line), and the thermal response is shown to be constant across the disk surface (blue line). Both responses account for the finite size of the ion beam. Inset (iv) shows the orientation of the 3  μm scan (red bar) using a FIB secondary electron image of the device. Error bars indicate the standard error of the mean; some are smaller than the data points.

Fig. 3.
Fig. 3.

Two-dimensional imaging of nanophotonic modes. (a) Image of the zeroth-order radial mode showing the spatially dependent optical shift; (b) data from (a) are compared with a 2D model of the mode intensity (inset). The optical shift (closed circles) is compared with the numerically calculated mode intensity (red line) averaged by the radial position on the microdisk after fitting. The thermal shift (open circles) shows the effects of nonlinear driving of the resonance at the mode position. Inset (i): The thermal response away from the optical mode position shows a hysteretic response, in which the original temperature is not restored after the ion pulse. This resonance is the same as described in Fig. 2 and was interrogated using 250 μs, 1 pA pulses (1500  ions). (c) Image of a first-order radial mode showing the optical response to 300 μs ion pulses on a separate device with Q5000 and λ1538  nm; (d) the optical response (closed circles) is compared to the numerically calculated mode profile (red line, inset), and the thermal response (open circles) again shows a hysteretic response that is uniform across the disk except at the mode maximum.

Fig. 4.
Fig. 4.

Persistent spectroscopic shifts of microdisk modes due to ion imaging. (a) A doublet mode [same as Fig. 3(c)] spectrum is measured interleaved with two separate 2D imaging sequences. The curves correspond to the initial spectrum (black) and the spectrum after the first (blue) and second (red) 2D images. The spectra show that the modes are redshifted and broadened during imaging, and that coupling to the lower-wavelength mode becomes dramatically reduced. (b) The wavelength of the laser is monitored using an optical wavemeter during the second imaging sequence (shaded area) and shows the stepwise shift of the disk resonance as the pulsed ion beam is rastered across the microdisk surface. The inset shows the resulting map of the optical mode.

Fig. 5.
Fig. 5.

Imaging of an optical standing wave and ion-beam mode editing. (a) 2D image of a zeroth-radial-order TM standing wave showing Δoptical at each point in space. This image is an average of four data sets taken of the same area; scale bars (white) are 0.5 μm. (b) Comparison of the imaged mode to a numerical mode simulation showing interferometric visibility of 0.28; (c) FIB secondary electron image of the microdisk device showing the orientation of the images in parts (a) in red and (e) in white; (d) optical transmission spectrum of the standing wave resonance before acquiring the image in (a). Light solid and dashed lines indicate the two separate resonances. (e) A larger area scan at the same microdisk location after the ion-beam dose shows no standing wave visibility. No standing wave is apparent in these data. (f) A comparison to the expected traveling wave mode shape.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ(t)={0t0Δthermal+Δopticalet/τs1etd/τs10<ttd  ΔopticalΔrelax[1e(ttd)/τr]t>td.