Abstract

Humans and other warm-blooded mammals maintain their body temperature within a narrow range in a process called homeostasis. This ability to maintain an internal temperature, which is relatively insensitive to changes in the external environment or heat load is vital for all complex processes that sustain life. Without the ability to regulate temperature, materials and devices that experience large temperature gradients or temperature cycles are vulnerable to performance degradation or even catastrophic failure. Thermal control akin to the way living organisms achieve thermal homeostasis is particularly important in environments such as space, where changing solar illumination can cause large temperature variations. Various systems have been used to mitigate temperature fluctuations; however, they tend to be bulky and require power. Here, we model micropatterned phase-change materials to design an efficient, solid-state alternative, which requires no external input power. Our design is based on switchable thermal emission, which takes advantage of temperature-induced phase-change behavior in thin films of vanadium oxide on silicon microcones.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material

Mikhail A. Kats, Romain Blanchard, Patrice Genevet, Zheng Yang, M. Mumtaz Qazilbash, D. N. Basov, Shriram Ramanathan, and Federico Capasso
Opt. Lett. 38(3) 368-370 (2013)

Measurement of the thermal coefficients of nonreversible phase-change optical recording films

Yung-Chieh Hsieh, M. Mansuripur, James Volkmer, and A. Brewen
Appl. Opt. 36(4) 866-872 (1997)

Multi-color modulation of solid-state display based on thermally induced color changes of indium tin oxide and phase changing materials

Yanbiao Lyu, Shenghong Mou, Zhigang Ni, Yu Bai, Ying Sun, and Zhiyuan Cheng
Opt. Express 25(2) 1405-1412 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. L. Pisacane, Fundamentals of Space Systems (Oxford University, 1994).
  2. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
    [Crossref]
  3. S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
    [Crossref]
  4. R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.
  5. T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
    [Crossref]
  6. R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
    [Crossref]
  7. H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
    [Crossref]
  8. C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.
  9. K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.
  10. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
    [Crossref]
  11. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
    [Crossref]
  12. Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
    [Crossref]
  13. C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
    [Crossref]
  14. D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
    [Crossref]
  15. J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
    [Crossref]
  16. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
    [Crossref]
  17. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
    [Crossref]
  18. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
    [Crossref]
  19. G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
    [Crossref]
  20. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
    [Crossref]
  21. D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
    [Crossref]
  22. D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
    [Crossref]
  23. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
    [Crossref]
  24. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
    [Crossref]
  25. X. Tian and Z.-Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
    [Crossref]
  26. H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
    [Crossref]
  27. O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).
  28. J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
    [Crossref]
  29. F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
    [Crossref]
  30. M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894–896 (2007).
    [Crossref]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).
  32. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).
  33. Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
    [Crossref]
  34. Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
    [Crossref]
  35. S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
    [Crossref]
  36. S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
    [Crossref]
  37. A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
    [Crossref]
  38. I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
    [Crossref]
  39. G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
    [Crossref]
  40. X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
    [Crossref]
  41. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
    [Crossref]
  42. P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
    [Crossref]
  43. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
    [Crossref]
  44. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
    [Crossref]
  45. X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
    [Crossref]
  46. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
    [Crossref]
  47. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [Crossref]

2017 (1)

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

2016 (7)

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

X. Tian and Z.-Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
[Crossref]

2015 (4)

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

2014 (6)

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

2013 (4)

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

2012 (2)

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

2011 (6)

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

2010 (1)

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

2009 (2)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

2008 (1)

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

2007 (2)

M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894–896 (2007).
[Crossref]

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

2006 (1)

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

2004 (1)

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

2003 (2)

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

Ahuja, R.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

Asano, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Atwater, H. A.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Aydin, K.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Barcomb, P.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

Bardosova, M.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Basov, D. N.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Batista, C.

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Bechtel, H. A.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Bergman, T. L.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Bermel, P.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Birur, G. C.

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Blasco, N.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Boyd, E. M.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Cai, J.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

Cao, C.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Cao, J.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Cao, Y.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Capasso, F.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Celanovic, I.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Chalvet, F.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Champion, J. L.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Chang, R. P. H.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Chen, C. T.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Chen, D.-M.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Chen, X.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Chen, Y. W.

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

Chen, Z.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Cheng, C.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Cui, L.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Dai, P.

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

Darrin, A. M.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Darrin, M. A. G.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

Deduytsche, D.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Detavernier, C.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Diaz, R. D.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Dicken, M. J.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Diroll, B. T.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Dittberner, M.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Douglas, D.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Du, J.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Ehrke, H.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Emery, J. D.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Emmer, H. S.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Ertekin, E.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Fan, D.

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Fan, S.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Fan, W.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Fang, J.

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Farrar, D.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

Fernandez, F. E.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Firebaugh, S. L.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

Fountaine, K. T.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Fu, D.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Gao, Y.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Ghebrebrhan, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Gholipour, B.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Gibaud, A.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Giessen, H.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Goldflam, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Goncharov, K.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Gotsmann, B.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Gottero, M.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Granqvist, C. G.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Grossman, J. C.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Guo, P.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Haglund, R. F.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Halabica, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Hermansson, K.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Hock, A. S.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Hu, S.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Huang, C.-M.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Huang, S.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Huber, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Inoue, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Jin, P.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Jing, Y. L.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Joannopoulos, J. D.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Kana, J. B. K.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Kanehira, M.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Kang, L.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Kats, M. A.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Kerbusch, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Khanal, D. R.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Kittl, J.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

Krein, S.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

Kübler, C.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Lashley, C.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

Lavine, A. S.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

Leitenstorfer, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Lewis, N. S.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Li, Q.

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Li, S. Y.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Li, Y.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Li, Z.-Y.

Liu, B.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Liu, K.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Liu, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Liu, X.

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

Lo, K.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Lopez, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Luo, H.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Lv, X.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Lysenko, S.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Ma, J.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Maaza, M.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Magnusson, R.

Martens, K.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Martinson, A. B. F.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

McLeod, A. S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Menges, F.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Michel, A.-K. U.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Nagano, H.

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

Nagasaka, Y.

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

Nairb, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Nakamura, Y.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Nawrodt, R.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Neubrech, F.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Niklasson, G. A.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Noda, S.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Novotny, L.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Ochi, A.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Ogletree, D. F.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Ohnishi, A.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Okamoto, A.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Orlov, A.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Osiander, R.

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Padilla, W. J.

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).

Parkin, S. S. P.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Pashkin, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Passarello, D.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Pemble, M. E.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Perotto, V.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Pisacane, V. L.

V. L. Pisacane, Fundamentals of Space Systems (Oxford University, 1994).

Povey, I. M.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Premkumar, P. A.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Pryce, I. M.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Qi, L.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

Radu, I.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Raman, A.

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Ramanathan, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

Rampelberg, G.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Rensberg, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Ribeiro, R. M.

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Riel, H.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Rodgers, S. M.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Ronning, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Rua, A.

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

Schaekers, M.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Schäferling, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Schaller, R. D.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Scheicher, R. H.

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

Schutter, B. D.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Schwarz, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Shimakawa, Y.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Shokooh-Saremi, M.

Skobelev, S. P.

O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Smolnikova, O. N.

O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).

Sniegowski, J. J.

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Soljacic, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Song, L.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Spieser, M.

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

Srinivasan, V.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Swanson, T. D.

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

Sweatlock, L. A.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Tachikawa, S.

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Tan, H.

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Tao, T.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Tarabrin, A.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Taubner, T.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Tavera, S.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Tazawa, M.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Teixeira, V.

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Tian, W.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Tian, X.

Tittl, A.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Toeller, M.

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Vignaud, G.

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Walavalkar, S.

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Wang, K. X.

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

Weimer, M. S.

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

Wen, Q. Y.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Wen, T. L.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Wu, J.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Wuttig, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Xie, Q.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Xiong, Y.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Xu, G.

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

Xuan, Y.

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

Yalamanchili, S.

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Yan, L.

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Yang, Q. H.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Yang, Z.

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

Yates, H. M.

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Yeng, Y. X.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Yim, J. W. L.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Yin, X.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

Zhang, H. W.

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zhang, R.

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

Zhang, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Zhang, X.-C.

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

Zhang, Z.

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zheng, H.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Zhou, Y.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

Zoppo, G. P.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

Zoysa, M. D.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

ACS Nano (1)

P. Guo, M. S. Weimer, J. D. Emery, B. T. Diroll, X. Chen, A. S. Hock, R. P. H. Chang, A. B. F. Martinson, and R. D. Schaller, “Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching,” ACS Nano 11, 693–701 (2016).
[Crossref]

ACS Photon. (1)

S. Yalamanchili, H. S. Emmer, K. T. Fountaine, C. T. Chen, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and <1% spectrum-and-angle-averaged reflection in tapered microwire arrays,” ACS Photon. 3, 1854–1861 (2016).
[Crossref]

Acta Astronaut. (1)

D. Fan, Q. Li, and P. Dai, “Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films,” Acta Astronaut. 121, 144–152 (2016).
[Crossref]

Adv. Mater. (3)

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref]

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28, 871–875 (2016).
[Crossref]

Appl. Phys. Lett. (4)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

F. Menges, M. Dittberner, L. Novotny, D. Passarello, S. S. P. Parkin, M. Spieser, H. Riel, and B. Gotsmann, “Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition,” Appl. Phys. Lett. 108, 171904 (2016).
[Crossref]

S. Hu, S. Y. Li, R. Ahuja, C. G. Granqvist, K. Hermansson, G. A. Niklasson, and R. H. Scheicher, “Optical properties of Mg-doped VO2: absorption measurements and hybrid functional calculations,” Appl. Phys. Lett. 101, 201902 (2012).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor–metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98, 162902 (2011).
[Crossref]

Appl. Surf. Sci. (1)

X. Lv, Y. Cao, L. Yan, Y. Li, and L. Song, “Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor,” Appl. Surf. Sci. 396, 214–220 (2017).
[Crossref]

Appl. Therm. Eng. (2)

D. Fan, Q. Li, Y. Xuan, H. Tan, and J. Fang, “Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application,” Appl. Therm. Eng. 51, 255–261 (2013).
[Crossref]

T. D. Swanson and G. C. Birur, “NASA thermal control technologies for robotic spacecraft,” Appl. Therm. Eng. 23, 1055–1065 (2003).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nairb, and S. Ramakrishna, “Anti-reflective coatings: a critical, in-depth review,” Energy Environ. Sci. 4, 3779–3804 (2011).
[Crossref]

Front. Optoelectron. (1)

Y. W. Chen and X.-C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7, 243–262 (2014).
[Crossref]

IEEE Sens. (1)

R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, and M. A. G. Darrin, “Microelectromechanical devices for satellite thermal control,” IEEE Sens. 4, 525–531 (2004).
[Crossref]

J. Appl. Phys. (4)

Z. Yang, C. Ko, and S. Ramanathan, “Metal–insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals,” J. Appl. Phys. 108, 073708 (2010).
[Crossref]

D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H. A. Bechtel, and J. Wu, “Comprehensive study of the metal–insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys. 113, 043707 (2013).
[Crossref]

A. Rua, R. D. Diaz, S. Lysenko, and F. E. Fernandez, “Semiconductor–insulator transition in VO2 (B) thin films grown by pulsed laser deposition,” J. Appl. Phys. 118, 125308 (2015).
[Crossref]

G. Xu, C.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[Crossref]

J. Phys. D (1)

Y. Xiong, Q. Y. Wen, Z. Chen, W. Tian, T. L. Wen, Y. L. Jing, Q. H. Yang, and H. W. Zhang, “Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers,” J. Phys. D 47, 455304 (2014).
[Crossref]

J. Thermophys. Heat Transfer (2)

H. Nagano and Y. Nagasaka, “Simple deployable radiator with autonomous thermal control function,” J. Thermophys. Heat Transfer 20, 856–864 (2006).
[Crossref]

S. Tachikawa, A. Ohnishi, Y. Shimakawa, A. Ochi, A. Okamoto, and Y. Nakamura, “Development of a variable emittance radiator based on a Perovskite manganese oxide,” J. Thermophys. Heat Transfer 17, 264–268 (2003).
[Crossref]

Mater. Horiz. (1)

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2, 37–53 (2015).
[Crossref]

Nano Energy (1)

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, “Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing,” Nano Energy 1, 221–246 (2012).
[Crossref]

Nano Lett. (1)

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2015).
[Crossref]

Nano. Res. Lett. (1)

C. Batista, R. M. Ribeiro, and V. Teixeira, “Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows,” Nano. Res. Lett. 6, 301–307 (2011).
[Crossref]

Nat. Mater. (1)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref]

Nat. Nanotech. (1)

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotech. 4, 732–737 (2009).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Opt. Express (1)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 018330 (2009).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. B. K. Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2 thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Optica (1)

Photon. Res. (1)

Phys. Rev. A (1)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Phys. Rev. B (1)

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
[Crossref]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
[Crossref]

Surf. Coat. Technol. (1)

I. M. Povey, M. Bardosova, F. Chalvet, M. E. Pemble, and H. M. Yates, “Atomic layer deposition for the fabrication of 3D photonic crystals structures: growth of Al2O3 and VO2 photonic crystal systems,” Surf. Coat. Technol. 201, 9345–9348 (2007).
[Crossref]

Thin Solid Films (1)

G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, “Crystallization and semiconductor–metal switching behavior of thin VO2 layers grown by atomic layer deposition,” Thin Solid Films 550, 59–64 (2014).
[Crossref]

Other (7)

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (Wiley, 1990).

V. L. Pisacane, Fundamentals of Space Systems (Oxford University, 1994).

R. Osiander, J. L. Champion, A. M. Darrin, J. J. Sniegowski, S. M. Rodgers, D. Douglas, and T. D. Swanson, “Micromachined Louver arrays for spacecraft thermal control radiators,” in 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (2001), paper 0215.

C. Lashley, S. Krein, and P. Barcomb, “Deployable radiators—a multidiscipline approach,” in SAE Paper (1998), paper 981691.

K. Goncharov, A. Orlov, A. Tarabrin, M. Gottero, V. Perotto, S. Tavera, and G. P. Zoppo, “1500  W deployable radiator with loop heat pipe,” in SAE Paper (2001), paper 012194.

O. N. Smolnikova and S. P. Skobelev, “Analysis of electromagnetic scattering from lossy periodic structures with application to wedge absorber,” in European Conference on Antennas and Propagation (2011).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Illustrations of thermal homeostasis in optics. A surface that radiates much more at a higher temperature will help maintain the object at the target temperature, Tc.

Fig. 2.
Fig. 2.

Design of structure for thermal homeostasis. (a) A square array of silicon microcones with a conformal VO2 coating, residing on a silicon film. Note that layer thicknesses are not drawn to scale. (b) A flat, VO2-coated silicon film. (c) An uncoated silicon film.

Fig. 3.
Fig. 3.

Emissivity spectra. (a) VO2-coated silicon microcones, (b) a VO2-coated flat silicon film, and (c) an uncoated silicon film. Results are for normal incidence, averaged over polarization.

Fig. 4.
Fig. 4.

Radiated thermal power. (a) The arrows indicate the direction of heating or cooling processes. The symbols represent the calculated values of thermal radiation for metallic (hollow symbols) VO2 or insulating (filled symbols) VO2 structures at 330 K. The solid curves represent the temperature-dependent model for radiated power assuming a phase transition width of 10 K. (b) Boundary conditions used to solve the heat equation.

Fig. 5.
Fig. 5.

Thermal homeostasis. (a) Temperature variation for different structures with a time-varying heat input flux. (b) Radiated power in an extended temperature range. The dotted–gray lines indicate the heat input range (150550  W/m2) and the corresponding steady-state temperature values for each structure.

Fig. 6.
Fig. 6.

Homeostatic operating range. [(a)–(c)] Temperature variation of the silicon microcone structure for different heat inputs. (d) Reduction in temperature variation for microcones with a narrower hysteresis width. The yellow shade illustrates the range of the hysteresis loop (homeostatic operating range).

Fig. 7.
Fig. 7.

Dependence on coating thickness. Radiated power at phase transition for a flat, VO2-coated silicon film.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Prad(T)=dΩcosθ2.5  μm30  μmdλ·IBB(λ,T)·ϵ(λ,Ω),
Prad(T)=dΩcosθ2.5  μm30  μmdλ·IBB(λ,T)·{ϵM(λ,Ω)·12[1+erf(TTc±12ΔTc)]+ϵI(λ,Ω)·12[1erf(TTc±12ΔTc)]},
ρCLCdT(t)dt=Pin(t)Prad(T),
t=tρCLC.
dT(t)dt=Pin(t)Prad(T).