Abstract

Significant progress in nonlinear and ultrafast optics has recently opened new and exciting opportunities for terahertz (THz) science and technology, which require the development of reliable THz sources, detectors, and supporting devices. In this work, we demonstrate the first solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1–10 THz), relying on the electric-field-induced second-harmonic generation in a thin layer of ultraviolet fused silica. The proposed CMOS-compatible devices, which can be realized with standard microfabrication techniques, allow us to perform ultra-broadband detection with a high dynamic range by employing probe laser powers and bias voltages much lower than those used in gas-based techniques. Eventually, this may pave the way for the use of high-repetition-rate ultrafast lasers and commercially available electronics for the coherent detection of ultrashort THz pulses.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Self-referenced ultra-broadband transient terahertz spectroscopy using air-photonics

F. D’Angelo, H. Němec, S. H. Parekh, P. Kužel, M. Bonn, and D. Turchinovich
Opt. Express 24(9) 10157-10171 (2016)

Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy

I-Chen Ho, Xiaoyu Guo, and X.-C. Zhang
Opt. Express 18(3) 2872-2883 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
    [Crossref]
  4. C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
    [Crossref]
  5. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [Crossref]
  6. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
    [Crossref]
  7. A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
    [Crossref]
  8. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
    [Crossref]
  9. Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
    [Crossref]
  10. Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [Crossref]
  11. A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
    [Crossref]
  12. A. Nahata and T. F. Heinz, “Detection of freely propagating terahertz radiation by use of optical second-harmonic generation,” Opt. Lett. 23, 67–69 (1998).
    [Crossref]
  13. D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999).
    [Crossref]
  14. J. Dai, X. Xu, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
    [Crossref]
  15. C.-Y. Li, D. V. Seletskiy, Z. Yang, and M. Sheik-Bahae, “Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias,” Opt. Express 23, 11436–11443 (2015).
    [Crossref]
  16. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
    [Crossref]
  17. J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
    [Crossref]
  18. U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61, 10702–10710 (2000).
    [Crossref]
  19. G. S. May and M. J. Sze, Fundamentals of Semiconductor Fabrication (Wiley, 2004).
  20. M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
    [Crossref]
  21. M. Naftaly and R. Dudley, “Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz timedomain spectrometers,” Opt. Lett. 34, 1213–1215 (2009).
    [Crossref]
  22. E. Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2,” J. Appl. Phys. 49, 2478–2489 (1978).
    [Crossref]
  23. X. Lu and X. C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
    [Crossref]
  24. K. J. Kaltenecker, S. Engelbrecht, K. Iwaszczuk, B. M. Fischer, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of biomolecular crystals,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).
  25. All data relevant to this article is accessible at http://dx.doi.org/10.5525/gla.researchdata.462.

2016 (2)

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

2015 (1)

2014 (1)

X. Lu and X. C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

2013 (2)

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

2011 (1)

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

2009 (1)

2008 (1)

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2006 (1)

J. Dai, X. Xu, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

2004 (1)

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

2003 (1)

C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
[Crossref]

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[Crossref]

2000 (1)

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61, 10702–10710 (2000).
[Crossref]

1999 (1)

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999).
[Crossref]

1998 (1)

1997 (1)

1995 (1)

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

1978 (1)

E. Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2,” J. Appl. Phys. 49, 2478–2489 (1978).
[Crossref]

Bosshard, C.

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61, 10702–10710 (2000).
[Crossref]

Busacca, A. C.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Caspani, L.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Chen, J. X.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999).
[Crossref]

Chen, Y.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Cino, A. C.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Clerici, M.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Cook, D. J.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999).
[Crossref]

Couairon, A.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Dai, J.

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

J. Dai, X. Xu, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

Dragoman, D.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

Dragoman, M.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

Dudley, R.

Engelbrecht, S.

K. J. Kaltenecker, S. Engelbrecht, K. Iwaszczuk, B. M. Fischer, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of biomolecular crystals,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).

Faccio, D.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Ferachou, D.

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Fischer, B. M.

K. J. Kaltenecker, S. Engelbrecht, K. Iwaszczuk, B. M. Fischer, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of biomolecular crystals,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).

Giguere, M.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Gu, J.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Gubler, U.

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61, 10702–10710 (2000).
[Crossref]

Harari, E.

E. Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2,” J. Appl. Phys. 49, 2478–2489 (1978).
[Crossref]

He, M.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Heinz, T. F.

Hochstrasser, R. M.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999).
[Crossref]

Huan, J.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Ibrahim, A.

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

Iwaszczuk, K.

K. J. Kaltenecker, S. Engelbrecht, K. Iwaszczuk, B. M. Fischer, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of biomolecular crystals,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).

Jepsen, P. U.

K. J. Kaltenecker, S. Engelbrecht, K. Iwaszczuk, B. M. Fischer, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of biomolecular crystals,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).

Kaltenecker, K. J.

K. J. Kaltenecker, S. Engelbrecht, K. Iwaszczuk, B. M. Fischer, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of biomolecular crystals,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).

Karpowicz, N.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Kirouac-Turmel, M.

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Legare, F.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Li, C.-Y.

Li, S.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Li, Y.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Liu, J.

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

Livreri, P.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Lotti, A.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Lu, X.

X. Lu and X. C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Matsuura, S.

May, G. S.

G. S. May and M. J. Sze, Fundamentals of Semiconductor Fabrication (Wiley, 2004).

Morandotti, R.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Morlino, E. A.

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999).
[Crossref]

Naftaly, M.

Nahata, A.

Nakashima, S.

Ouyang, C.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Ozaki, T.

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Parisi, A.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Peccianti, M.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Sakai, K.

Schmidt, B. E.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Seletskiy, D. V.

Shalaby, M.

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

Sharma, G.

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

Sheik-Bahae, M.

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[Crossref]

Singh, K.

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

Stivala, S.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Sze, M. J.

G. S. May and M. J. Sze, Fundamentals of Semiconductor Fabrication (Wiley, 2004).

Tani, M.

Tian, Z.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Tomasino, A.

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Wu, Q.

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

Xu, X.

J. Dai, X. Xu, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

Yamaguchi, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Yang, Z.

Zandonella, C.

C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
[Crossref]

Zhang, W.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Zhang, X.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Zhang, X. C.

X. Lu and X. C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

J. Dai, X. Xu, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

Zhang, Y.

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

Zhao, H.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, and X. C. Zhang, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92, 011131 (2008).
[Crossref]

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[Crossref]

Chem. Phys. Lett. (1)

D. J. Cook, J. X. Chen, E. A. Morlino, and R. M. Hochstrasser, “Terahertz-field-induced second-harmonic generation measurements of liquid dynamics,” Chem. Phys. Lett. 309, 221–228 (1999).
[Crossref]

Front. Optoelectron. (1)

X. Lu and X. C. Zhang, “Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics,” Front. Optoelectron. 7, 121–155 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[Crossref]

J. Appl. Phys. (1)

E. Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2,” J. Appl. Phys. 49, 2478–2489 (1978).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Nature (1)

C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61, 10702–10710 (2000).
[Crossref]

Phys. Rev. Lett. (2)

M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. Legare, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Phys. Rev. Lett. 110, 253901 (2013).
[Crossref]

J. Dai, X. Xu, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97, 103903 (2006).
[Crossref]

Prog. Quantum Electron. (1)

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

Sci. Rep. (3)

A. Ibrahim, D. Ferachou, G. Sharma, K. Singh, M. Kirouac-Turmel, and T. Ozaki, “Ultra-high dynamic range electro-optic sampling for detecting millimetre and sub-millimeter radiation,” Sci. Rep. 6, 23107 (2016).
[Crossref]

Y. Zhang, X. Zhang, S. Li, J. Gu, Y. Li, Z. Tian, C. Ouyang, M. He, J. Huan, and W. Zhang, “A broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector,” Sci. Rep. 6, 26949 (2016).
[Crossref]

A. Tomasino, A. Parisi, S. Stivala, P. Livreri, A. C. Cino, A. C. Busacca, M. Peccianti, and R. Morandotti, “Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling,” Sci. Rep. 3, 3116 (2013).
[Crossref]

Other (4)

G. S. May and M. J. Sze, Fundamentals of Semiconductor Fabrication (Wiley, 2004).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

K. J. Kaltenecker, S. Engelbrecht, K. Iwaszczuk, B. M. Fischer, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of biomolecular crystals,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).

All data relevant to this article is accessible at http://dx.doi.org/10.5525/gla.researchdata.462.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Materials

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematics of the two types of SSBCD devices and simulations of the bias field distribution. (a) Micro-slit, featuring a 30-μm-large silica gap and two large gold electrodes, and (b) subwavelength slits, featuring a few-micrometer silica gap and two electrode fingers. Finite difference method simulations showing (c) the static potential distribution and (d) the corresponding static electric field around the 30-μm-wide slit for a bias voltage of 1 kV (dashed white lines indicate the silica–air interface).

Fig. 2.
Fig. 2.

Sketch of the ultra-broadband THz-TDS setup. An ultrashort optical pulse is spit into pump and probe beams by means of a 90/10 beam splitter (BS). The pump is focused with its second harmonic (SH), achieved through a beta barium borate (BBO) crystal, to generate a two-color plasma emitting THz pulses. A series of 90° off-axis parabolic mirrors handle the THz beam, whereas a high-resistivity 0.5-mm-thick silicon wafer blocks the residual SH and infrared beams. THz radiation is then focused along with the probe beam into the SSBCD device, placed on the focus of the last parabolic mirror. A shortpass (SP) filter rejects the residual probe pulse, while a photomultiplier tube (PMT) acquires the generated SH beam. The inset shows how THz, probe, and bias electric fields interplay to generate the SH beam.

Fig. 3.
Fig. 3.

(a) THz electric field transients recorded via the 30-μm-wide slit as a function of the bias voltage. For clarity, the curves are shifted along the y axis. (b) Corresponding dynamic range (dashed green line) and peak signal (dashed orange line) trends as a function of the bias voltage. (c) Power Spectral Density (PSD) evaluated via fast Fourier transform (FFT) of the THz waveform at 800 V: comparison between standard ABCD technique (solid orange line) and detection via the micro-slit (SSBCD) device (solid green line).

Fig. 4.
Fig. 4.

(a) THz electric field transients recorded via the 3-μm-gap, 10-μm-wide finger detector as a function of the bias voltage. For clarity, the curves are again shifted along the y axis. (b) Corresponding dynamic range (dashed green line) and peak signal (dashed orange line) trends as a function of the bias voltage. (c) Power Spectral Density (PSD) evaluated via FFT of the THz waveform at 300 V: comparison between the standard ABCD technique (solid orange line) and detection via our subwavelength slit (SSBCD) device (solid green line).

Fig. 5.
Fig. 5.

Transmission spectra for a 1.3-mm-thick pellet of ibuprofen retrieved via SSBCD (red solid curve) and for a 0.6-mm-thick pellet via FTS (blue dashed curve). Curves are shifted along the y axis for clarity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I SH total ( χ ( 3 ) I ω ) 2 [ ( E THz ) 2 + ( E bias ) 2 ± 2 E THz E bias ] ,