Abstract

3D computer-generated holography uses a digital phase mask to shape the wavefront of a laser beam into a user-specified 3D intensity pattern. Algorithms take the target 3D intensity as input and compute the hologram that generates it. However, arbitrary patterns are generally infeasible, so solutions are approximate and often sub-optimal. Here, we propose a new non-convex optimization algorithm that computes holograms by minimizing a custom cost function that is tailored to particular applications (e.g., lithography, neural photostimulation) or leverages additional information like sample shape and nonlinearity. Our method is robust and accurate, and it out-performs existing algorithms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vortex-free phase profiles for uniform patterning with computer-generated holography

Marc Guillon, Benoît C. Forget, Amanda J. Foust, Vincent De Sars, Monika Ritsch-Marte, and Valentina Emiliani
Opt. Express 25(11) 12640-12652 (2017)

3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated phase-only holographic display

Chien-Yu Chen, Wu-Chun Li, Hsuan-Ting Chang, Chih-Hao Chuang, and Tsung-Jan Chang
J. Opt. Soc. Am. B 34(5) B42-B48 (2017)

Speckle-free, shaded 3D images produced by computer-generated holography

Takayuki Kurihara and Yasuhiro Takaki
Opt. Express 21(4) 4044-4054 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
    [Crossref]
  2. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
    [Crossref]
  3. S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
    [Crossref]
  4. N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).
  5. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
    [Crossref]
  6. F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).
  7. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [Crossref]
  8. D. Leseberg, “Computer-generated three-dimensional image holograms,” Appl. Opt. 31, 223–229 (1992).
    [Crossref]
  9. T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast calculation of computer-generated-hologram on AMD hd5000 series GPU and OpenCL,” Opt. Express 18, 9955–9960 (2010).
    [Crossref]
  10. O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549–2556 (2004).
    [Crossref]
  11. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).
  12. M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
    [Crossref]
  13. R. Piestun, J. Shamir, B. Weßkamp, and O. Bryngdahl, “On-axis computer-generated holograms for three-dimensional display,” Opt. Lett. 22, 922–924 (1997).
    [Crossref]
  14. R. Piestun, B. Spektor, and J. Shamir, “Wave fields in three dimensions: analysis and synthesis,” J. Opt. Soc. Am. A 13, 1837–1848 (1996).
    [Crossref]
  15. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
    [Crossref]
  16. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
    [Crossref]
  17. Z. Jingshan, L. Tian, J. Dauwels, and L. Waller, “Partially coherent phase imaging with simultaneous source recovery,” Biomed. Opt. Express 6, 257–265 (2015).
    [Crossref]
  18. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  19. L.-H. Yeh, “Analysis and comparison of Fourier ptychographic phase retrieval algorithms,” (University of California, 2016).
  20. D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimization,” Math. Program. 45, 503–528 (1989).
    [Crossref]
  21. F. E. Curtis and X. Que, “A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees,” Math. Program. Comput. 7, 399–428 (2015).
    [Crossref]
  22. L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
    [Crossref]
  23. V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods 4, 943–950 (2007).
    [Crossref]
  24. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
    [Crossref]
  25. B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
    [Crossref]
  26. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
    [Crossref]
  27. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
    [Crossref]
  28. P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr., MEMS, MOEMS 14, 023507 (2015).
    [Crossref]
  29. N. Pégard and J. Zhang, “MATLAB code for NOVO-CGH,” https://github.com/Waller-Lab/NOVOCGH (2017). GitHub repository.

2015 (3)

F. E. Curtis and X. Que, “A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees,” Math. Program. Comput. 7, 399–428 (2015).
[Crossref]

Z. Jingshan, L. Tian, J. Dauwels, and L. Waller, “Partially coherent phase imaging with simultaneous source recovery,” Biomed. Opt. Express 6, 257–265 (2015).
[Crossref]

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr., MEMS, MOEMS 14, 023507 (2015).
[Crossref]

2011 (3)

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref]

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).

2010 (2)

T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast calculation of computer-generated-hologram on AMD hd5000 series GPU and OpenCL,” Opt. Express 18, 9955–9960 (2010).
[Crossref]

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

2008 (3)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
[Crossref]

2007 (3)

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
[Crossref]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods 4, 943–950 (2007).
[Crossref]

R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[Crossref]

2005 (3)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

2004 (1)

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549–2556 (2004).
[Crossref]

2002 (1)

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[Crossref]

1997 (1)

1996 (1)

1992 (1)

1989 (1)

D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

1972 (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

1969 (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Adesnik, H.

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).

Anselmi, F.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Bamberg, E.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
[Crossref]

Bègue, A.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).

Belfort, G. M.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Boyden, E. S.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
[Crossref]

Bryngdahl, O.

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Charpak, S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Chow, B. Y.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Chuong, A. S.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Curtis, F. E.

F. E. Curtis and X. Que, “A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees,” Math. Program. Comput. 7, 399–428 (2015).
[Crossref]

Dauwels, J.

de Sars, V.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

Deisseroth, K.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
[Crossref]

DeMarco, B.

DeSars, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

DiGregorio, D. A.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Dobry, A. S.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Emiliani, V.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Fenno, L.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref]

Gerchberg, R.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

Guillon, M.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

Han, X.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

He, G. S.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[Crossref]

Henninger, M. A.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Herzig, H. P.

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549–2556 (2004).
[Crossref]

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Ianni, F.

Ichihashi, Y.

Ito, T.

Jingshan, Z.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Kettunen, V.

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549–2556 (2004).
[Crossref]

Kolodziejczyk, A.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Leonardo, R. D.

Leseberg, D.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Li, M.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Lin, T.-C.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[Crossref]

Lin, Y.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Liu, D. C.

D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

Lutz, C.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Makowski, M.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Mardinly, A. R.

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).

Markowicz, P. P.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[Crossref]

Masuda, N.

Menon, R.

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr., MEMS, MOEMS 14, 023507 (2015).
[Crossref]

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Monahan, P. E.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Nagel, G.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
[Crossref]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods 4, 943–950 (2007).
[Crossref]

Nocedal, J.

D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

Ogden, D.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).

Oldenburg, I. A.

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).

Otis, T. S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Papagiakoumou, E.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

Pasienski, M.

Pégard, N. C.

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Piestun, R.

Poskanzer, K. E.

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods 4, 943–950 (2007).
[Crossref]

Prasad, P. N.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[Crossref]

Qian, X.

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

Que, X.

F. E. Curtis and X. Que, “A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees,” Math. Program. Comput. 7, 399–428 (2015).
[Crossref]

Ripoll, O.

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549–2556 (2004).
[Crossref]

Ruocco, G.

Saxton, W.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Shamir, J.

Shimobaba, T.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Spektor, B.

Sridharan, S.

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Suszek, J.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
[Crossref]

Sypek, M.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Takada, N.

Tang, C.-M.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

Tian, L.

Ventalon, C.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).

Waller, L.

Z. Jingshan, L. Tian, J. Dauwels, and L. Waller, “Partially coherent phase imaging with simultaneous source recovery,” Biomed. Opt. Express 6, 257–265 (2015).
[Crossref]

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).

Wang, P.

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr., MEMS, MOEMS 14, 023507 (2015).
[Crossref]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Weßkamp, B.

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Yang, S.

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

Yeh, L.-H.

L.-H. Yeh, “Analysis and comparison of Fourier ptychographic phase retrieval algorithms,” (University of California, 2016).

Yizhar, O.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref]

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods 4, 943–950 (2007).
[Crossref]

Zhang, F.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
[Crossref]

Annu. Rev. Neurosci. (1)

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34, 389–412 (2011).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

J. Micro/Nanolithogr., MEMS, MOEMS (1)

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr., MEMS, MOEMS 14, 023507 (2015).
[Crossref]

J. Neural Eng. (1)

S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.-M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng. 8, 046002 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Math. Program. (1)

D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimization,” Math. Program. 45, 503–528 (1989).
[Crossref]

Math. Program. Comput. (1)

F. E. Curtis and X. Que, “A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees,” Math. Program. Comput. 7, 399–428 (2015).
[Crossref]

Nat. Methods (2)

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods 4, 943–950 (2007).
[Crossref]

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5, 821–827 (2008).
[Crossref]

Nat. Neurosci. (1)

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8, 1263–1268 (2005).
[Crossref]

Nature (2)

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, and E. S. Boyden, “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature 463, 98–102 (2010).
[Crossref]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002).
[Crossref]

Opt. Eng. (3)

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng. 43, 2549–2556 (2004).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optik (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Proc. Nat. Acad. Sci. (1)

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Nat. Acad. Sci. 108, 19504–19509 (2011).

Other (4)

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, and H. Adesnik, “3D scanless holographic optogenetics with temporal focusing,” Nat. Commun. In press (2017).

N. Pégard and J. Zhang, “MATLAB code for NOVO-CGH,” https://github.com/Waller-Lab/NOVOCGH (2017). GitHub repository.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

L.-H. Yeh, “Analysis and comparison of Fourier ptychographic phase retrieval algorithms,” (University of California, 2016).

Supplementary Material (3)

NameDescription
» Supplement 1       Supplemental document
» Visualization 1       Video of 3D intensity (at different depth planes) resulting from 3D CGH phase-only Fourier holograms calculated by 4 different algorithms for comparison.
» Visualization 2       Variable intensity NOVO-CGH results.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Experimental setup for 3D CGH. A SLM imposes a phase pattern (hologram) on an incoming collimated plane wave. A Lens (focal length, f) in 2f configuration transforms the resulting wavefront into a 3D intensity distribution in the volume-of-interest. 3D CGH algorithms aim to generate a target 3D intensity distribution, V(x,y,z)=Vz(x,y), within the volume-of-interest by designing, ϕ, the phase pattern on the SLM. (b) For our binary NOVO-CGH algorithm, we introduce a custom cost function with two parts, L1 and L2, which are truncated square functions defined in Eq. (9). L1 penalizes intensities above a certain threshold, l, for dark voxels of the target pattern, and L2 is the opposite (penalizes intensity below a threshold, h, for bright voxels). Total cost is the sum of all pixels’ cost values.
Fig. 2.
Fig. 2. Simulation results comparing NOVO-CGH to existing algorithms. (a) Target 3D intensity pattern containing 10 letters at evenly spaced depth planes (5 mm separation). (b) Quantitative comparison of simulation results between superposition [2], sequential Gerchberg–Saxton (GS) [12], global GS [14], and our binary NOVO-CGH algorithm. Normalized intensity histograms compare intensity values within bright and dark voxels separately, showing that NOVO-CGH yields more uniform intensity. (c) (Left) Computed 2D phase mask to be displayed on the SLM. (Center) Resulting intensity distributions at each patterned depth plane. (Right) Intensity slice in the x-z plane. (d) Intermediate intensity at planes between the “A” and “B” planes for NOVO-CGH. All intensity images have the same colorbar. Propagation images through intermediate planes are shown in Visualization 1.
Fig. 3.
Fig. 3. Numerical comparison of algorithm performance in simulation. (a) Efficiency and accuracy versus number of iterations for a target intensity with 3 depth planes. Superposition algorithm is not iterative, so is drawn as a dotted line. (b) Efficiency and accuracy degrade as the target intensity pattern becomes more complicated (contains more depth planes).
Fig. 4.
Fig. 4. Experimental results demonstrating improved 3D intensity patterning with NOVO-CGH, as compared to previous algorithms. (a) Comparison of simulation and experimental results for a two-plane intensity target. Calculated phase holograms are shown at left. (b) Experimental measurements for a six-plane intensity pattern. All images use the same camera settings.
Fig. 5.
Fig. 5. Experimental results for neural photostimulation. (a) Target 3D intensity is a bright disc (10 μm radius) at one depth, surrounded by darkness. Planes are evenly spaced by 0.03 mm. (b) x-y and y-z cross-sections of two-photon absorption (fluorescence) measured along the center of the volume. (c) Two-photon absorption axial cross-cuts. (d) Sorting all voxels in descending order, we plot two-photon absorption versus volume. Given a neuron of volume 8×103  μm3, values in the pink region represent intensity in undesired regions.
Fig. 6.
Fig. 6. NOVO-CGH with unspecified regions. (a) Simulated 3D target intensity with 70 randomly distributed spheres. Red targets are desired bright regions, and blue targets are desired dark regions, with the remainder of the volume unspecified. (b)–(f) Resulting 3D intensity distributions from (b) superposition algorithm, (c) sequential GS, (d) global GS, (e) binary NOVO-CGH, and (f) NOVO-CGH with unspecified regions. We display in each case threshold envelopes of the volume intensity distribution (3% of maximal intensity, in red) alongside the blue regions. (g) For an equal amount of illumination within the red targets, we compute the amount of unwanted illumination in the blue targets, repeating the simulation 10 times with randomized distributions. NOVO-CGH out-performs other algorithms and further enhances confinement when unspecified regions are allowed.
Fig. 7.
Fig. 7. Computation times on log scale for varying numbers of target depth planes. We use GPU computing to generate holograms of size 1272×1024, with 50 iterations for the GS algorithms and the NOVO-CGH algorithm.

Tables (1)

Tables Icon

Algorithm 1. NOVO-CGH Algorithm

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P2(x,y)=1iλfP1(x,y)exp[2iπ(xx+yy)λf]dxdy,
P3(x,y)=P2(x,y)iλzexp[iπ((xx)2+(yy)2)λz]dxdy,
ϕ=arg[zZTf1Tz1[Vzexp(jϕz)]],
ϕ*=argminϕL(I(ϕ),V),
Lϕ=LIIEEϕ,
Eϕ=diag[sin(ϕ)+icos(ϕ)].
IE=zZIzE=zZ2γ2Kz*Fdiag[FHKzE].
L(I,V)=x,y,zfor  V(x,y,z)=0L1(I(x,y,z))+x,y,zfor  V(x,y,z)=1L2(I(x,y,z)),
L1(I)={(Il)2,if  I>l0,otherwise.
LI=2(Il)Tdiag[I>l]diag[1V]+2(Ih)Tdiag[I<h]diag[V],
[I>l](x,y,z)={1,if  I(x,y,z)>l0,otherwise.
α(I,V)=x,y,zI(x,y,z)V(x,y,z)[x,y,zV(x,y,z)2][x,y,zI(x,y,z)2],
η(I,V)=Effective energyTotal energy=x,y,zV(x,y,z)=1I(x,y,z)x,y,zI(x,y,z)=I,VI1,

Metrics