Abstract

Mid-infrared lasers, emitting in the spectral region of 3–12 μm that contains strong characteristic vibrational transitions of many important molecules, are highly desirable for spectroscopy sensing applications. High-efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning that is critical for spectroscopy applications still largely relies on incorporating external gratings, which have stability issues. Here, we demonstrate a monolithic, broadly tunable quantum cascade laser source emitting between 6.1 and 9.2 μm through an on-chip integration of a sampled grating distributed feedback tunable laser array and a beam combiner. High peak power up to 65 mW has been obtained through a balanced high-gain active region design, efficient waveguide layout, and the development of a broadband antireflection coating. Nearly fundamental transverse-mode operation is achieved for all emission wavelengths with a pointing stability better than 1.6 mrad (0.1°). The demonstrated laser source opens new opportunities for mid-infrared spectroscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devices [Invited]

Manijeh Razeghi, Wenjia Zhou, Steven Slivken, Quan-Yong Lu, Donghai Wu, and Ryan McClintock
Appl. Opt. 56(31) H30-H44 (2017)

CWDM source based on AlGaInAs/InP monolithically integrated DFB laser array

Lianping Hou, Mohsin Haji, Jehan Akbar, John H. Marsh, and A. Catrina Bryce
Opt. Lett. 36(21) 4188-4190 (2011)

Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4  μm

Feng Xie, C. Caneau, H. Leblanc, M.-T. Ho, and C. Zah
Opt. Lett. 40(17) 4158-4161 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
    [Crossref]
  2. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express 23, 8462 (2015).
    [Crossref]
  3. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
    [Crossref]
  4. C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
    [Crossref]
  5. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
    [Crossref]
  6. N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi, Opt. Express 23, 21159 (2015).
    [Crossref]
  7. F. Xie, C. Caneau, H. Leblanc, M. T. Ho, and C. Zah, Opt. Lett. 40, 4158 (2015).
    [Crossref]
  8. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
    [Crossref]
  9. S. Kalchmair, R. Blanchard, T. S. Mansuripur, G. M. de Naurois, C. Pfluegl, M. F. Witinski, L. Diehl, F. Capasso, and M. Loncar, Opt. Express 23, 15734 (2015).
    [Crossref]
  10. A. S. Diba, F. Xie, B. Gross, L. C. Hughes, C. E. Zah, and F. Moshary, Opt. Express 23, 27123 (2015).
    [Crossref]
  11. W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
    [Crossref]
  12. S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
    [Crossref]
  13. P. Baumeister, Optical Coating Technology (SPIE, 2004).
  14. P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
    [Crossref]
  15. C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
    [Crossref]

2016 (2)

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
[Crossref]

W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
[Crossref]

2015 (5)

2013 (1)

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

2012 (1)

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

2010 (1)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
[Crossref]

2009 (2)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
[Crossref]

2001 (1)

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express 23, 8462 (2015).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
[Crossref]

Baillargeon, J. N.

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

Bandyopadhyay, N.

W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express 23, 8462 (2015).
[Crossref]

N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi, Opt. Express 23, 21159 (2015).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
[Crossref]

Baumeister, P.

P. Baumeister, Optical Coating Technology (SPIE, 2004).

Beck, M.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Bismuto, A.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

Blanchard, R.

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Caneau, C.

Capasso, F.

S. Kalchmair, R. Blanchard, T. S. Mansuripur, G. M. de Naurois, C. Pfluegl, M. F. Witinski, L. Diehl, F. Capasso, and M. Loncar, Opt. Express 23, 15734 (2015).
[Crossref]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

Chen, M.

Cho, A. Y.

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

de Naurois, G. M.

Delaunay, P. Y.

P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
[Crossref]

Diba, A. S.

Diehl, L.

Faist, J.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Furstenberg, R.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
[Crossref]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Gmachl, C.

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

Gross, B.

Heydari, D.

Ho, M. T.

Hoffman, D.

P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
[Crossref]

Huang, E. K. W.

P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
[Crossref]

Hughes, L. C.

Hugi, A.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Hutchinson, A. L.

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

Kalchmair, S.

Kendziora, C. A.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
[Crossref]

Leblanc, H.

Loncar, M.

Lu, Q. Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express 23, 8462 (2015).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
[Crossref]

Mansuripur, T. S.

McClintock, R.

W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
[Crossref]

McGill, R. A.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
[Crossref]

Moshary, F.

Nguyen, B. M.

P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
[Crossref]

Nguyen, V.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
[Crossref]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Papantonakis, M.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
[Crossref]

Pfluegl, C.

Razeghi, M.

W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
[Crossref]

N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi, Opt. Express 23, 21159 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express 23, 8462 (2015).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
[Crossref]

P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
[Crossref]

Riedi, S.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

Sengupta, S.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

Sivco, D. L.

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

Slivken, S.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express 23, 8462 (2015).
[Crossref]

N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi, Opt. Express 23, 21159 (2015).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
[Crossref]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Witinski, M. F.

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

Wu, D. H.

W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
[Crossref]

Xie, F.

Zah, C.

Zah, C. E.

Zhou, W.

Zhou, W. J.

W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
[Crossref]

Appl. Phys. Lett. (5)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 97, 231119 (2010).
[Crossref]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, Appl. Phys. Lett. 79, 572 (2001).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, Proc. SPIE 9836, 98362G (2016).
[Crossref]

Sci. Rep. (1)

W. J. Zhou, N. Bandyopadhyay, D. H. Wu, R. McClintock, and M. Razeghi, Sci. Rep. 6, 25213 (2016).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[Crossref]

Other (1)

P. Baumeister, Optical Coating Technology (SPIE, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic structure of the five-core heterogeneous QCL design. (b) A conduction band diagram and relevant energy levels of a QCL stage emitting at 7.4 μm based on the strain-balanced Al0.63In0.37As/Ga0.35In0.65As/Ga0.47In0.53As material system. (c) An overlay plot of the simulated gain of each QCL stage designed for different wavelengths and the total modal gain at a current density of 4  kA/cm2. The loss at the long wavelength side (>10  μm) comes from intersubband absorptions within the mini-band. (d) An overlay plot of the compiled single-mode emission spectra of the DFB laser array, threshold current, and single-mode peak power as a function of wavelength.

Fig. 2.
Fig. 2.

(a) Schematic structure of the wavelength-tunable QCL source with monolithically integrated SGDFB laser array and beam combiner. (b) The transverse-mode evolution in the three stages of the beam combining. (c) The simulated fundamental-mode power transmission of the beam combiner as a function of wavenumber for the eight input waveguide channels (dash line). The selected channel for each laser is highlighted by a solid line.

Fig. 3.
Fig. 3.

(a) Simulated maximum reflectivity between 6 and 10 μm as a function of the MgF2 and ZnSe film thicknesses. The coating sequence is a laser facet/ZnSe/MgF2. The enclosure inside the white circle is a region where the maximum reflectivity is less than 2%. (b) The measured reflectivity curves of the AR coating consisting of 800 nm ZnSe and 1400 nm MgF2.

Fig. 4.
Fig. 4.

Overlay plot of the compiled tuning spectra of the eight SGDFB lasers emitting from a single aperture and the measured output power. There are eight sets of peaks, represented in different colors corresponding to laser #1 through #8, respectively.

Fig. 5.
Fig. 5.

(a) Typical beam shape measured by an infrared FPA for a beam combiner pumped by lasers #1–#8, showing mostly fundamental-mode operation for each laser. (b) The angular displacement as a function of wavelength as the laser wavelength is scanned over the full tuning range.

Metrics