Abstract

Increasing the size of low-orbiting space telescopes is necessary to attain high-resolution imaging for Earth or planetary science, which implies bigger and more complex imaging systems in the focal plane. The use of homothetic imaging systems such as the Spot and Pleiades push-broom satellites would lead to prohibitive linear focal plane dimensions, especially for IR missions requiring large-volume cryostat. We present two optical TMA telescopes using an image-segmentation module based on astronomical image slicer technology developed for integral field spectroscopy, made of a set of freeform mirrors defined by Zernike polynomials. Each telescope has a linear 1.1° field of view; the first one considers a matrix detector and the second one considers several linear TDI detectors currently used in space missions. We demonstrate that such systems provide efficient optical quality over the full field and offer a substantial gain in terms of volume of the focal plane arrays.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Online refocusing algorithm for a satellite camera using stellar sources

Jeong-Bin Jo, Jai-Hyuk Hwang, and Jae-Sung Bae
Opt. Express 24(5) 5411-5422 (2016)

The misalignment induced aberrations of TMA telescopes

Kevin P. Thompson, Tobias Schmid, and Jannick P. Rolland
Opt. Express 16(25) 20345-20353 (2008)

Foveated scanning: dynamic monodimensional enlargement of resolved field of view in lenses of scanner systems

Farhang Javaherian and Bizhan Rashidian
Appl. Opt. 55(26) 7314-7323 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
    [Crossref]
  2. F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
    [Crossref]
  3. A. Ealet and E. Prieto, and the SNAP collaboration, “An integral field spectrograph for SNAP supernova identification,” arXiv: astro-ph/0210087 (2002).
  4. M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
    [Crossref]
  5. Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
    [Crossref]
  6. J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low f-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17, 015605 (2015).
    [Crossref]
  7. C. Huang and X. Liu, “Design of off-axis four-mirror optical system without obscuration based on free-form surface,” Proc. SPIE 9795, 97952D (2015).
    [Crossref]
  8. J. D. Nelson, K. Medicus, and M. Brophy, “Fabricating and testing freeform optics: current capabilities, lessons learned and future opportunities,” in Classical Optics (2014), paper OW3B.2.
  9. K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three ϕ-polynomial Zernike mirrors,” Opt. Lett. 39, 2896–2899 (2014).
    [Crossref]
  10. D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
    [Crossref]
  11. M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
    [Crossref]
  12. V. Costes, L. Perret, D. Laurier, and J. Delvit, “Active optics for next generation space telescopes,” Proc. ICSO 006 (2016).
  13. J. Ye, Z. Gao, S. Wang, J. Cheng, W. Wang, and W. Sun, “Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture,” J. Opt. Soc. Am. A 31, 2304–2311 (2014).
    [Crossref]
  14. E. Hugot, W. Jahn, D. Henry, and B. Chambion, “Flexible focal plane arrays for UVOIR wide field instrumentation,” Proc. SPIE 9915, 99151H (2016).
    [Crossref]
  15. K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
    [Crossref]

2016 (1)

E. Hugot, W. Jahn, D. Henry, and B. Chambion, “Flexible focal plane arrays for UVOIR wide field instrumentation,” Proc. SPIE 9915, 99151H (2016).
[Crossref]

2015 (2)

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low f-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17, 015605 (2015).
[Crossref]

C. Huang and X. Liu, “Design of off-axis four-mirror optical system without obscuration based on free-form surface,” Proc. SPIE 9795, 97952D (2015).
[Crossref]

2014 (4)

K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three ϕ-polynomial Zernike mirrors,” Opt. Lett. 39, 2896–2899 (2014).
[Crossref]

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

J. Ye, Z. Gao, S. Wang, J. Cheng, W. Wang, and W. Sun, “Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture,” J. Opt. Soc. Am. A 31, 2304–2311 (2014).
[Crossref]

2013 (1)

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

2012 (1)

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[Crossref]

2008 (1)

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

2006 (1)

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

2003 (1)

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Agócs, T.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Bacon, R.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Bonneville, C.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Boudon, D.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Brady, D. J.

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[Crossref]

Brophy, M.

J. D. Nelson, K. Medicus, and M. Brophy, “Fabricating and testing freeform optics: current capabilities, lessons learned and future opportunities,” in Classical Optics (2014), paper OW3B.2.

Challita, Z.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Chambion, B.

E. Hugot, W. Jahn, D. Henry, and B. Chambion, “Flexible focal plane arrays for UVOIR wide field instrumentation,” Proc. SPIE 9915, 99151H (2016).
[Crossref]

Chazallet, F.

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Cheng, J.

Clarke, F.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

Closs, M. F.

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

Costes, V.

V. Costes, L. Perret, D. Laurier, and J. Delvit, “Active optics for next generation space telescopes,” Proc. ICSO 006 (2016).

Cuby, J.-G.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Davies, R. L.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Davis, G. E.

de Zeeuw, P. T.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Delvit, J.

V. Costes, L. Perret, D. Laurier, and J. Delvit, “Active optics for next generation space telescopes,” Proc. ICSO 006 (2016).

Devilliers, C.

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Druart, G.

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Dumas, D.

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Ealet, A.

A. Ealet and E. Prieto, and the SNAP collaboration, “An integral field spectrograph for SNAP supernova identification,” arXiv: astro-ph/0210087 (2002).

Fendler, M.

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Ferrari, M.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Ferruit, P.

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Freeman, D.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

Fuerschbach, K.

Gaeremynck, Y.

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Gao, Z.

Gilmore, G. F.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Goodsall, T.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

Henault, F.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Henry, D.

E. Hugot, W. Jahn, D. Henry, and B. Chambion, “Flexible focal plane arrays for UVOIR wide field instrumentation,” Proc. SPIE 9915, 99151H (2016).
[Crossref]

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Hou, W.

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low f-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17, 015605 (2015).
[Crossref]

Hourtoule, C.

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Huang, C.

C. Huang and X. Liu, “Design of off-axis four-mirror optical system without obscuration based on free-form surface,” Proc. SPIE 9795, 97952D (2015).
[Crossref]

Hugot, E.

E. Hugot, W. Jahn, D. Henry, and B. Chambion, “Flexible focal plane arrays for UVOIR wide field instrumentation,” Proc. SPIE 9915, 99151H (2016).
[Crossref]

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Inal, K.

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Jahn, W.

E. Hugot, W. Jahn, D. Henry, and B. Chambion, “Flexible focal plane arrays for UVOIR wide field instrumentation,” Proc. SPIE 9915, 99151H (2016).
[Crossref]

Jaskó, A.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Jin, G.

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low f-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17, 015605 (2015).
[Crossref]

Kim, J.

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[Crossref]

Kroes, G.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Laslandes, M.

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Laurier, D.

V. Costes, L. Perret, D. Laurier, and J. Delvit, “Active optics for next generation space telescopes,” Proc. ICSO 006 (2016).

Le Mignant, D.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

LeFevre, O.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Lemonnier, J.-P.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Lilly, S.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Liu, X.

C. Huang and X. Liu, “Design of off-axis four-mirror optical system without obscuration based on free-form surface,” Proc. SPIE 9795, 97952D (2015).
[Crossref]

Lobb, D. R.

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

Lopez, C.

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Marks, D. L.

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[Crossref]

Massoni, E.

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Medicus, K.

J. D. Nelson, K. Medicus, and M. Brophy, “Fabricating and testing freeform optics: current capabilities, lessons learned and future opportunities,” in Classical Optics (2014), paper OW3B.2.

Miller, C.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Morris, S. L.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Mosoni, L.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Nelson, J. D.

J. D. Nelson, K. Medicus, and M. Brophy, “Fabricating and testing freeform optics: current capabilities, lessons learned and future opportunities,” in Classical Optics (2014), paper OW3B.2.

Perret, L.

V. Costes, L. Perret, D. Laurier, and J. Delvit, “Active optics for next generation space telescopes,” Proc. ICSO 006 (2016).

Preuss, W. R.

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

Prieto, E.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

A. Ealet and E. Prieto, and the SNAP collaboration, “An integral field spectrograph for SNAP supernova identification,” arXiv: astro-ph/0210087 (2002).

Rolland, J. P.

Rolt, S.

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

Salaun, Y.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

Schnetler, H.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Singer, C.

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Son, H. S.

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[Crossref]

Steinmetz, M.

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

Sun, W.

Talbot, R. G.

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

Taylor, W.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Tecza, M.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

Tekaya, K.

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

Thatte, N.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

Thompson, K. P.

Venema, L.

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Wang, S.

Wang, W.

Ye, J.

Zhang, X.

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low f-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17, 015605 (2015).
[Crossref]

Zhu, J.

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low f-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17, 015605 (2015).
[Crossref]

J. Opt. (1)

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low f-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17, 015605 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (3)

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[Crossref]

M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, “Mirror actively deformed and regulated for applications in space: design and performance,” Opt. Eng. 52, 091803 (2013).
[Crossref]

Z. Challita, T. Agócs, E. Hugot, A. Jaskó, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, and J.-G. Cuby, “Design and development of a freeform active mirror for an astronomy application,” Opt. Eng. 53, 031311 (2014).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (6)

E. Hugot, W. Jahn, D. Henry, and B. Chambion, “Flexible focal plane arrays for UVOIR wide field instrumentation,” Proc. SPIE 9915, 99151H (2016).
[Crossref]

K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, and D. Henry, “Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras,” Proc. SPIE 9070, 90702T (2014).
[Crossref]

M. F. Closs, P. Ferruit, D. R. Lobb, W. R. Preuss, S. Rolt, and R. G. Talbot, “The integral field unit on the James Webb space telescope’s near-infrared spectrograph,” Proc. SPIE 7010, 701011 (2008).
[Crossref]

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “Swift image slicer: large format, compact, low scatter image slicing,” Proc. SPIE 6273, 62732L (2006).
[Crossref]

F. Henault, R. Bacon, C. Bonneville, D. Boudon, R. L. Davies, P. Ferruit, G. F. Gilmore, O. LeFevre, J.-P. Lemonnier, S. Lilly, S. L. Morris, E. Prieto, M. Steinmetz, and P. T. de Zeeuw, “Muse: a second-generation integral-field spectrograph for the VLT,” Proc. SPIE 4841, 1096–1107 (2003).
[Crossref]

C. Huang and X. Liu, “Design of off-axis four-mirror optical system without obscuration based on free-form surface,” Proc. SPIE 9795, 97952D (2015).
[Crossref]

Other (3)

J. D. Nelson, K. Medicus, and M. Brophy, “Fabricating and testing freeform optics: current capabilities, lessons learned and future opportunities,” in Classical Optics (2014), paper OW3B.2.

V. Costes, L. Perret, D. Laurier, and J. Delvit, “Active optics for next generation space telescopes,” Proc. ICSO 006 (2016).

A. Ealet and E. Prieto, and the SNAP collaboration, “An integral field spectrograph for SNAP supernova identification,” arXiv: astro-ph/0210087 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Pleiades focal plane. Linear TDI detectors are positioned on each box face. Light split is done inside by folding and splitting mirrors. The inner volume is about 400×100×80  mm [credit CNES].

Fig. 2.
Fig. 2.

Optical principle of the reverse image-slicing telescope.

Fig. 3.
Fig. 3.

Top: layout of the unfolded TMA Telescope 1. Bottom: zoom on the unfolded segmentation module layout. Colors represents sub-fields, and each sub-field is a configuration as explained later. Green is configuration C0, red is C3, and orange is C6.

Fig. 4.
Fig. 4.

Scheme of the optimized configurations we consider and respective image position on the matrix detector. Green is configuration C0, red is C3, and orange is C6.

Fig. 5.
Fig. 5.

Image quality: RMS wavefront error of configurations C0, C3, and C6 from top to bottom.

Fig. 6.
Fig. 6.

Modulation transfer function for 10 points in the sub-fields corresponding to configurations C0, C3, and C6 (from top to bottom).

Fig. 7.
Fig. 7.

Residuals after subtraction of the mean spherical surface for slicing mirrors of configurations C0, C3, and C6.

Fig. 8.
Fig. 8.

Residuals after subtraction of definition sphere for focusing mirrors of configurations C0, C3, and C6.

Fig. 9.
Fig. 9.

MTF value deviation at Nyquist frequency from nominal solution due to tip/tilt and shift (respectively filled and striped bar) on slicing and focusing mirrors (respectively upper and lower diagram).

Fig. 10.
Fig. 10.

Top: layout of the unfolded TMA Telescope 2. Bottom: zoom on the unfolded segmentation module layout. Green is configuration C0, red is C2, and orange is C4.

Fig. 11.
Fig. 11.

Scheme of the optimized configurations we consider and respective image position on the matrix detector. Green is configuration C0, red is C2, and orange is C4.

Fig. 12.
Fig. 12.

Image quality: RMS spot radius at wavefront error of configurations C0, C2, and C4 from top to bottom.

Fig. 13.
Fig. 13.

Modulation transfer function of configuration C0, C2, and C4 from top to bottom.

Fig. 14.
Fig. 14.

Residuals after subtraction of definition sphere from slicing mirrors of configurations C0 (top), C2 (middle), and C4 (bottom).

Fig. 15.
Fig. 15.

Residuals after subtraction of definition sphere from focusing mirrors of configuration C0, C2, and C4.

Tables (8)

Tables Icon

Table 1. Comparative Table of IFU Characteristics and the Proposed Segmentation Module

Tables Icon

Table 2. Investigated Parameters for the Parametric Study

Tables Icon

Table 3. Main Characteristics of the Two Telescopes

Tables Icon

Table 4. Wavefront Error Indicator of the Three Configurations

Tables Icon

Table 5. PV Deviation in μm from the Mean Spherical Surface of Mirrors

Tables Icon

Table 6. Wavefront Error Indicators of the Three Configurations

Tables Icon

Table 7. PV Deviation in Micrometers from Spherical Surface of Mirror Definition

Tables Icon

Table 8. Comparative Table of the Main Characteristics of Telescopes 1 and 2 and the Monocentric Multiscale Camera

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z=cxx2+cyy21+[1(1+kx)cx2x2]1/2[1(1+ky)cy2y2]1/2+i=1N=19AiZi(ρ,ϕ),
z=cr21+[1(1+k)c2r2]1/2+i=1N=19AiZi(ρ,ϕ),