Abstract

Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a multi-view SHG imaging platform that successfully visualizes all orientations of collagen fibers. This is achieved by rotating tissues relative to the excitation laser plane of incidence, where the complete fibrillar structure is then visualized following registration and reconstruction. We evaluated high frequency and Gaussian weighted fusion reconstruction algorithms, and found the former approach performs better in terms of the resulting resolution. The new approach is a first step toward SHG tomography.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging

Tung Yuen Lau, Raghu Ambekar, and Kimani C. Toussaint
Opt. Express 20(19) 21821-21832 (2012)

Correlation between polarization sensitive optical coherence tomography and second harmonic generation microscopy in skin

Viet-Hoan Le, Seunghun Lee, Bumju Kim, Yeoreum Yoon, Calvin J. Yoon, Wan Kyun Chung, and Ki Hean Kim
Biomed. Opt. Express 6(7) 2542-2551 (2015)

Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging

Stéphane Bancelin, André Nazac, Bicher Haj Ibrahim, Petr Dokládal, Etienne Decencière, Benjamin Teig, Huda Haddad, Hervé Fernandez, Marie-Claire Schanne-Klein, and Antonello De Martino
Opt. Express 22(19) 22561-22574 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protocols 7, 654–669 (2012).
    [Crossref]
  2. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
    [Crossref]
  3. E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
    [Crossref]
  4. R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional non-linear laser imaging of basal cell carcinoma,” Opt. Express 15, 10135–10148 (2007).
    [Crossref]
  5. A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
    [Crossref]
  6. W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
    [Crossref]
  7. P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
    [Crossref]
  8. B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
    [Crossref]
  9. R. Lacomb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504–4514 (2008).
    [Crossref]
  10. K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
    [Crossref]
  11. Z. Liu, K. P. Quinn, L. Speroni, L. Arendt, C. Kuperwasser, C. Sonnenschein, A. M. Soto, and I. Georgakoudi, “Rapid three-dimensional quantification of voxel-wise collagen fiber orientation,” Biomed. Opt. Express 6, 2294–2310 (2015).
    [Crossref]
  12. C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
    [Crossref]
  13. W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
    [Crossref]
  14. B. Wen, K. R. Campbell, B. L. Cox, K. W. Eliceiri, R. Superfine, and P. J. Campagnola, “Multi-view second-harmonic generation imaging of mouse tail tendon via reflective micro-prisms,” Opt. Lett. 40, 3201–3204 (2015).
    [Crossref]
  15. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
    [Crossref]
  16. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
    [Crossref]
  17. P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
    [Crossref]
  18. A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
    [Crossref]
  19. R. W. Boyd, “The nonlinear optical susceptibility,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 1, pp. 1–67.
  20. A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
    [Crossref]
  21. A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
    [Crossref]
  22. R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative SHG imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008).
    [Crossref]
  23. S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
    [Crossref]
  24. D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
    [Crossref]
  25. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
    [Crossref]
  26. U. Krzic, “Multiple-view microscopy with light-sheet based fluorescence microscope,” Ph.D. dissertation (Heidelberg University, 2009).
  27. S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak, “Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion,” Proc. SPIE 6914, 69140E (2008).
    [Crossref]
  28. T. Lindeberg, “Scale-space theory: a basic tool for analyzing structures at different scales,” J. Appl. Stat. 21, 225–270 (1994).
    [Crossref]

2017 (1)

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

2016 (1)

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

2015 (2)

2012 (4)

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protocols 7, 654–669 (2012).
[Crossref]

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

2011 (1)

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
[Crossref]

2010 (1)

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

2008 (5)

R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative SHG imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008).
[Crossref]

S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak, “Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion,” Proc. SPIE 6914, 69140E (2008).
[Crossref]

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

R. Lacomb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504–4514 (2008).
[Crossref]

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

2007 (3)

R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional non-linear laser imaging of basal cell carcinoma,” Opt. Express 15, 10135–10148 (2007).
[Crossref]

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
[Crossref]

2006 (1)

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

2003 (1)

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

2002 (2)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

2001 (1)

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
[Crossref]

1997 (1)

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
[Crossref]

1994 (1)

T. Lindeberg, “Scale-space theory: a basic tool for analyzing structures at different scales,” J. Appl. Stat. 21, 225–270 (1994).
[Crossref]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Akens, M. K.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

Arendt, L.

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Barzda, V.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

Beaurepaire, E.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Boucher, Y.

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Boyd, R. W.

R. W. Boyd, “The nonlinear optical susceptibility,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 1, pp. 1–67.

Brackmann, C.

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

Brewer, M. A.

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

Brown, E.

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Campagnola, P. J.

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

B. Wen, K. R. Campbell, B. L. Cox, K. W. Eliceiri, R. Superfine, and P. J. Campagnola, “Multi-view second-harmonic generation imaging of mouse tail tendon via reflective micro-prisms,” Opt. Lett. 40, 3201–3204 (2015).
[Crossref]

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protocols 7, 654–669 (2012).
[Crossref]

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
[Crossref]

R. Lacomb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504–4514 (2008).
[Crossref]

R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative SHG imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008).
[Crossref]

Campbell, J. M.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

Campbell, K. R.

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

B. Wen, K. R. Campbell, B. L. Cox, K. W. Eliceiri, R. Superfine, and P. J. Campagnola, “Multi-view second-harmonic generation imaging of mouse tail tendon via reflective micro-prisms,” Opt. Lett. 40, 3201–3204 (2015).
[Crossref]

Carey, S.

R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative SHG imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008).
[Crossref]

Carli, P.

Chang, S.

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

Chen, X.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protocols 7, 654–669 (2012).
[Crossref]

Cicchi, R.

Collignon, A.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
[Crossref]

Cox, B. L.

Crestani, B.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Da Silva, L. B.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Dahlberg, J. O.

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

De Giorgi, V.

de Lange Davies, C.

A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
[Crossref]

Debarre, D.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

di Tomaso, E.

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Dong, C. Y.

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
[Crossref]

Eliceiri, K. W.

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

B. Wen, K. R. Campbell, B. L. Cox, K. W. Eliceiri, R. Superfine, and P. J. Campagnola, “Multi-view second-harmonic generation imaging of mouse tail tendon via reflective micro-prisms,” Opt. Lett. 40, 3201–3204 (2015).
[Crossref]

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

Enejder, A.

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

Erikson, A.

A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
[Crossref]

Eubank, W.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
[Crossref]

Fabre, A.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Firdous, S.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Foo, C. W.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Gatenholm, P.

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

Georgakoudi, I.

Z. Liu, K. P. Quinn, L. Speroni, L. Arendt, C. Kuperwasser, C. Sonnenschein, A. M. Soto, and I. Georgakoudi, “Rapid three-dimensional quantification of voxel-wise collagen fiber orientation,” Biomed. Opt. Express 6, 2294–2310 (2015).
[Crossref]

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Gupta, S.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Hasak, M. P.

S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak, “Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion,” Proc. SPIE 6914, 69140E (2008).
[Crossref]

Haynor, D. R.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
[Crossref]

Hecksher-Sorensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Hompland, T.

A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
[Crossref]

Huisken, J.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Hunter, M.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Inman, D. R.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

Jain, R. K.

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Kaplan, D. L.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Kaufmann, A.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

Keely, P. J.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

Kim, B. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Kim, H. J.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Krouglov, S.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

Krzic, U.

U. Krzic, “Multiple-view microscopy with light-sheet based fluorescence microscope,” Ph.D. dissertation (Heidelberg University, 2009).

Kuperwasser, C.

LaComb, R.

R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative SHG imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008).
[Crossref]

R. Lacomb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504–4514 (2008).
[Crossref]

Lally, C.

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

Lewellyn, T. K.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
[Crossref]

Lindeberg, T.

T. Lindeberg, “Scale-space theory: a basic tool for analyzing structures at different scales,” J. Appl. Stat. 21, 225–270 (1994).
[Crossref]

Lindgren, M.

A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
[Crossref]

Liu, Z.

Lotti, T.

Maes, F.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
[Crossref]

Marchal, G.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
[Crossref]

Marchal-Somme, J.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Martin, J. L.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Massi, D.

Mattes, D.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
[Crossref]

McKee, T.

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Mickoleit, M.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

Nadiarnykh, O.

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

R. Lacomb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504–4514 (2008).
[Crossref]

R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative SHG imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008).
[Crossref]

Nadiarynkh, O.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protocols 7, 654–669 (2012).
[Crossref]

Ortegren, J.

A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
[Crossref]

Patankar, M.

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

Pavone, F. S.

Pena, A. M.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Plotnikov, S.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protocols 7, 654–669 (2012).
[Crossref]

Pluen, A.

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Preibisch, S.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak, “Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion,” Proc. SPIE 6914, 69140E (2008).
[Crossref]

Provenzano, P. P.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

Quinn, K. P.

Reiser, K. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Rice, W. L.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Rohlfing, T.

S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak, “Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion,” Proc. SPIE 6914, 69140E (2008).
[Crossref]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Rubenchik, A. M.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Saalfeld, S.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Salih, S. M.

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

Sandkuijl, D.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

Schanne-Klein, M. C.

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Schindelin, J.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Seed, B.

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Sestini, S.

Sharpe, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Singh, V.

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

Sonnenschein, C.

Soto, A. M.

Speroni, L.

Stelzer, E. H.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Stoller, P.

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

Suetens, P.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
[Crossref]

Sun, W.

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

Superfine, R.

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Tai, D. C.

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

Tan, N.

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

Tang, H.

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

Tilbury, K.

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

Tilbury, K. B.

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

Tomancak, P.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak, “Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion,” Proc. SPIE 6914, 69140E (2008).
[Crossref]

Tuer, A. E.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

Vandermeulen, D.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
[Crossref]

Vesselle, H.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
[Crossref]

Vrana, N. E.

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

Wang, Y.

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Weber, M.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

Wen, B.

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

B. Wen, K. R. Campbell, B. L. Cox, K. W. Eliceiri, R. Superfine, and P. J. Campagnola, “Multi-view second-harmonic generation imaging of mouse tail tendon via reflective micro-prisms,” Opt. Lett. 40, 3201–3204 (2015).
[Crossref]

White, J. G.

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

Whyne, C. M.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

Wilson, B. C.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Xiao, G.

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

Yu, H.

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

Biomaterials (1)

W. L. Rice, S. Firdous, S. Gupta, M. Hunter, C. W. Foo, Y. Wang, H. J. Kim, D. L. Kaplan, and I. Georgakoudi, “Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy,” Biomaterials 29, 2015–2024 (2008).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

R. Lacomb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504–4514 (2008).
[Crossref]

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103, 2093–2105 (2012).
[Crossref]

BMC Cancer (1)

K. B. Tilbury, K. R. Campbell, K. W. Eliceiri, S. M. Salih, M. Patankar, and P. J. Campagnola, “Stromal alterations in ovarian cancers via wavelength dependent second harmonic generation microscopy and optical scattering,” BMC Cancer 17, 102 (2017).
[Crossref]

BMC Med. (1)

P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[Crossref]

Development (1)

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

IEEE Trans. Med. Imaging (1)

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging 16, 187–198 (1997).
[Crossref]

J. Appl. Stat. (1)

T. Lindeberg, “Scale-space theory: a basic tool for analyzing structures at different scales,” J. Appl. Stat. 21, 225–270 (1994).
[Crossref]

J. Biomed. Opt. (4)

R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, “Quantitative SHG imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008).
[Crossref]

W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[Crossref]

P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002).
[Crossref]

A. Erikson, J. Ortegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12, 044002 (2007).
[Crossref]

J. Biophoton. (1)

C. Brackmann, J. O. Dahlberg, N. E. Vrana, C. Lally, P. Gatenholm, and A. Enejder, “Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose,” J. Biophoton. 5, 404–414 (2012).
[Crossref]

Laser Photon. Rev. (1)

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
[Crossref]

Microsc. Res. Tech. (1)

A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162–170 (2007).
[Crossref]

Nat. Med. (1)

E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003).
[Crossref]

Nat. Methods (1)

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Nat. Protocols (1)

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protocols 7, 654–669 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Nonrigid multimodality image registration,” Proc. SPIE 4322, 1609–1620 (2001).
[Crossref]

S. Preibisch, T. Rohlfing, M. P. Hasak, and P. Tomancak, “Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion,” Proc. SPIE 6914, 69140E (2008).
[Crossref]

Sci. Rep. (1)

B. Wen, K. R. Campbell, K. Tilbury, O. Nadiarnykh, M. A. Brewer, M. Patankar, V. Singh, K. W. Eliceiri, and P. J. Campagnola, “3D texture analysis for classification of second harmonic generation images of human ovarian cancer,” Sci. Rep. 635734 (2016).
[Crossref]

Science (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Other (2)

R. W. Boyd, “The nonlinear optical susceptibility,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 1, pp. 1–67.

U. Krzic, “Multiple-view microscopy with light-sheet based fluorescence microscope,” Ph.D. dissertation (Heidelberg University, 2009).

Supplementary Material (3)

NameDescription
» Visualization 1       Spinning bead-based reconstructed 3D image of a knot-tied mouse-tail tendon.
» Visualization 2       Rotating 3D image reconstructed by use of the high-frequency fusion algorithm.
» Visualization 3       Rotating 3D image reconstructed by use of the Gaussian-weighted fusion algorithm.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Assigned axes configuration showing fiber bundle oriented along the y axis relative to the direction of laser excitation.
Fig. 2.
Fig. 2. CAD renderings indicating key components, such as the motor for sample rotation, the glass window bottom for forward SHG detection, and FEP tubing sample holder and water chamber for index of refraction matching.
Fig. 3.
Fig. 3. Diagram of front and side cross section views of the experimental setup. Blue boxes within the tubes represent outlines of the sequential rotating image volumes. The curved arrow and dashed line delineate the axis of rotation.
Fig. 4.
Fig. 4. Full fields of view images of (a1) fluorescence and (b1) SHG at 0° and (c1) fluorescence and (d1) SHG at 108° view. Isolated tendon fascicle of (a2) fluorescence and (b2) SHG at 0° view and (c2) fluorescence and (d2) SHG at 108° view. 2D intensity correlation histograms for (a3) 0° view and (b3) 0°. The x and y axes for 2D intensity histograms correspond to normalized SHG and TPEF image pixel intensities, respectively. The heat map is normalized from highest pixel frequency to lowest in 256 color bins. Field size for full images (column1)=483×483  µm. The curved arrow and dashed line delineate the axis of rotation. Field size for fascicle insets (column2)=80×80  µm.
Fig. 5.
Fig. 5. (a) Brightfield and (b) SHG images of coiled tendon oriented at 0°; (c) SHG image of tendon rotated 72°. The red arrow indicates missing fibers due to orientation parallel to excitation and the green arrow shows fibers reappearing after the 72° sample rotation. The curved arrow and dashed line delineate the axis of rotation. Scale bar=100  µm.
Fig. 6.
Fig. 6. Full 3D reconstructed knot-tied mouse-tail tendon using bead-based reconstruction. Scale bar=100  µm.
Fig. 7.
Fig. 7. (a) Full 3D reconstructed coiled mouse-tail tendon using the high-frequency fusion algorithm. (b) Full 3D reconstruction using the Gaussian-weighted fusion algorithm. The arrows delineate a region where the recovered contrast is different and the Gaussian method reveals different features. Scale bar is 100 µm. Expanded insets (c) and (d) show the fiber resolution is superior in the high frequency fusion method. The area of the inset in each case is 100  µm×45  µm.
Fig. 8.
Fig. 8. Contrast assessments of identical planes of the coiled tendon via line profile intensity plots drawn in the exact same position. Single views are shown in (a)–(d) and the respective intensities are plotted in blue in (e)–(h). The results for the high-frequency fusion and Gaussian-weighted reconstructions (Fig. 7) are plotted in purple and green, respectively. Line plots from a second region are shown in (i)–(l), where the single view intensities are shown in cyan. Scale bar=100  µm.
Fig. 9.
Fig. 9. FFTs and analysis of obtained spatial frequencies for two views (0 and 288 deg; shown in blue) and the high-frequency (purple) and Gaussian-weighted (green) fusions.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P(2)=ϵ0χijk(2)EjEk,
deff=[e1e2e3][000d21d22d2300000d16000d3400][e12e22e322e3e22e3e12e1e2],
deff=3d16(e12e2+e32e2)+d22e23.
(e1,e2,e3)=(sin(ωt),0,cos(ωt)),
deff=[d22cos2(ωt)+3d16sin2(ωt)]cos(ωt),
T=argmaxTI(u(x,y,z),T(v(x,y,z))),
I(u(x,y,z),v(T(x,y,z)))H(u(x,y,z))+H(v(T(x,y,z)))H(u(x,y,z),v(T(x,y,z))),
H(u)p(u)lnp(u)du,
Ifused(x,y,z)αWα(x,y,z)Iα(x,y,z)αWα(x,y,z).
wαd2(x,y,z)=|2Iαx2|+|2Iαy2|+|2Iαz2|,
Wα=Gσ2*(Iα(Gσ1*Iα))2.

Metrics