Abstract

Broadband laser light sources in the mid-infrared region attract enormous interest due to the plethora of applications they are enabling, including multispecies trace gas detection, free-space communications, and infrared countermeasures. Key to the progress in supercontinuum generation has been the wide availability of fiber-based near-infrared and bulk-optic mid-infrared pump sources and suitably engineered nonlinear media capable of supporting high-brightness supercontinua. A large proportion of the system complexity relates to the pump source itself with free-space systems based on parametric conversion being the most common for the generation of long-wavelength supercontinua. In an effort to realize all fiber and all mid-infrared supercontinuum sources, we combine a recently developed 2.9 µm ultrafast fiber laser based on holmium with an environmentally stable, polymer-protected all-chalcogenide tapered fiber. By launching 230 fs, 4.2 kW peak power pulses into the As2Se3/As2S3 tapered fiber, we demonstrate a spectrum spanning from 1.8 to 9.5 µm at the 20  dB points with an average power of more than 30 mW. This >2 octave-spanning supercontinuum is a crucial step toward robust mid-infrared broadband sources required for future field-deployable instruments.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber

Tonglei Cheng, Kenshiro Nagasaka, Tong Hoang Tuan, Xiaojie Xue, Morio Matsumoto, Hiroshige Tezuka, Takenobu Suzuki, and Yasutake Ohishi
Opt. Lett. 41(9) 2117-2120 (2016)

Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm

Reza Salem, Zack Jiang, Dongfeng Liu, Robert Pafchek, David Gardner, Paul Foy, Mohammed Saad, Doug Jenkins, Alex Cable, and Peter Fendel
Opt. Express 23(24) 30592-30602 (2015)

Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared

L. Shen, N. Healy, L. Xu, H. Y. Cheng, T. D. Day, J. H. V. Price, J. V. Badding, and A. C. Peacock
Opt. Lett. 39(19) 5721-5724 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Cheng, K. Nagasaka, T. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, Opt. Lett. 41, 2117 (2016).
    [Crossref]
  2. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
    [Crossref]
  3. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
    [Crossref]
  4. C. Petersen, R. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, Opt. Express 25, 15336 (2017).
    [Crossref]
  5. X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, Opt. Express 22, 24179 (2014).
    [Crossref]
  6. A. Al Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, Opt. Express 22, 31131 (2014).
    [Crossref]
  7. N. Singh, D. Hudson, Y. Yu, C. Grillet, S. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. Moss, and B. Eggleton, Optica 2, 797 (2015).
    [Crossref]
  8. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, Laser Photon. Rev. 8, 792 (2014).
    [Crossref]
  9. A. Reyes, Z. Hou, E. Mastrigt, R. Horsten, J. Jongste, M. Pijnenburg, H. Urbach, and N. Bhattacharya, Opt. Express 22, 18299 (2014).
    [Crossref]
  10. S.-L. Girard, M. Allard, M. Piché, and F. Babin, Appl. Opt. 54, 1647 (2015).
    [Crossref]
  11. R. Bartlome and M. Sigrist, Opt. Lett. 34, 866 (2009).
    [Crossref]
  12. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. Rud Keiding, Opt. Express 20, 4887 (2012).
    [Crossref]
  13. A. Seddon, Phys. Status Solidi B 250, 1020 (2013).
    [Crossref]
  14. A. Schliesser, N. Picqué, and T. Hänsch, Nat. Photonics 6, 440 (2012).
    [Crossref]
  15. D. Hudson, M. Baudisch, D. Werdehausen, B. Eggleton, and J. Biegert, Opt. Lett. 39, 5752 (2014).
    [Crossref]
  16. U. Møller, Y. Yu, I. Kubat, C. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B.-L. Davies, and O. Bang, Opt. Express 23, 3282 (2015).
    [Crossref]
  17. A. Marandi, C. Rudy, V. Plotnichenko, E. Dianov, K. Vodopyanov, and R. Byer, Opt. Express 20, 24218 (2012).
    [Crossref]
  18. C. Baker and M. Rochette, Opt. Express 18, 12391 (2010).
    [Crossref]
  19. N. Abdukerim and M. Rochette, Opt. Express 24, 18931 (2016).
    [Crossref]
  20. D. Hudson, E. Mägi, A. Judge, S. Dekker, and B. Eggleton, Opt. Commun. 285, 4660 (2012).
    [Crossref]
  21. R. Ahmad and M. Rochette, Opt. Express 20, 9572 (2012).
    [Crossref]
  22. S. Xing, D. Grassani, S. Kharitonov, L. Brilland, C. Caillaud, J. Trolès, and C.-S. Brès, Optica 4, 643 (2017).
    [Crossref]
  23. R. Ahmad and M. Rochette, Opt. Express 20, 10095 (2012).
    [Crossref]
  24. N. Abdukerim, L. Li, M. El Amraoui, Y. Messaddeq, and M. Rochette, Appl. Phys. Lett. 110, 161103 (2017).
    [Crossref]
  25. W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, Opt. Express 21, 19732 (2013).
    [Crossref]
  26. A. Heidt, J. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. Alam, and D. Richardson, Opt. Express 21, 24281 (2013).
    [Crossref]
  27. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, Opt. Express 22, 24384 (2014).
    [Crossref]
  28. C. Petersen, P. Moselund, C. Petersen, U. Møller, and O. Bang, Opt. Express 24, 749 (2016).
    [Crossref]
  29. T. Hu, S. Jackson, and D. Hudson, Opt. Lett. 40, 4226 (2015).
    [Crossref]
  30. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
    [Crossref]
  31. S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
    [Crossref]
  32. D. Hudson, Opt. Fiber Technol. 20, 631 (2014).
    [Crossref]
  33. S. Antipov, D. Hudson, A. Fuerbach, and S. Jackson, Optica 3, 1373 (2016).
    [Crossref]
  34. C. Baker and M. Rochette, IEEE Photon. J. 4, 960 (2012).
    [Crossref]
  35. A. Heidt, J. Feehan, J. Price, and T. Feurer, J. Opt. Soc. Am. B 34, 764 (2017).
    [Crossref]
  36. https://www.miriad-tech.com .
  37. J. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge, 2010).
  38. J. Lægsgaard, Opt. Express 15, 16110 (2007).
    [Crossref]
  39. J. Hu, C. Menyuk, L. Shaw, J. Sanghera, and I. Aggarwal, Opt. Express 18, 6722 (2010).
    [Crossref]
  40. S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, and M. Withford, Opt. Express 23, 7946 (2015).
    [Crossref]

2017 (4)

2016 (5)

2015 (7)

2014 (7)

2013 (3)

2012 (8)

A. Schliesser, N. Picqué, and T. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

D. Hudson, E. Mägi, A. Judge, S. Dekker, and B. Eggleton, Opt. Commun. 285, 4660 (2012).
[Crossref]

C. Baker and M. Rochette, IEEE Photon. J. 4, 960 (2012).
[Crossref]

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. Rud Keiding, Opt. Express 20, 4887 (2012).
[Crossref]

R. Ahmad and M. Rochette, Opt. Express 20, 9572 (2012).
[Crossref]

R. Ahmad and M. Rochette, Opt. Express 20, 10095 (2012).
[Crossref]

A. Marandi, C. Rudy, V. Plotnichenko, E. Dianov, K. Vodopyanov, and R. Byer, Opt. Express 20, 24218 (2012).
[Crossref]

2010 (2)

2009 (1)

2007 (1)

Abdukerim, N.

N. Abdukerim, L. Li, M. El Amraoui, Y. Messaddeq, and M. Rochette, Appl. Phys. Lett. 110, 161103 (2017).
[Crossref]

N. Abdukerim and M. Rochette, Opt. Express 24, 18931 (2016).
[Crossref]

Aggarwal, I.

Aggarwal, I. D.

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

Agger, C.

Ahmad, R.

Al Kadry, A.

Alam, S.

Allard, M.

Antipov, S.

Atanackovic, P.

Babin, F.

Baker, C.

C. Baker and M. Rochette, IEEE Photon. J. 4, 960 (2012).
[Crossref]

C. Baker and M. Rochette, Opt. Express 18, 12391 (2010).
[Crossref]

Bang, O.

Bartlome, R.

Baskiotis, C.

Baudisch, M.

Bernier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Bhattacharya, N.

Biegert, J.

Brès, C.-S.

Brilland, L.

Byer, R.

Caillaud, C.

Casas-Bedoya, A.

Chen, W.

Cheng, T.

Choi, D.-Y.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, Laser Photon. Rev. 8, 792 (2014).
[Crossref]

Davies, B.-L.

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, Laser Photon. Rev. 8, 792 (2014).
[Crossref]

Dekker, S.

D. Hudson, E. Mägi, A. Judge, S. Dekker, and B. Eggleton, Opt. Commun. 285, 4660 (2012).
[Crossref]

Dianov, E.

Dupont, S.

Duval, S.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Duvall, S.

Eggleton, B.

El Amraoui, M.

N. Abdukerim, L. Li, M. El Amraoui, Y. Messaddeq, and M. Rochette, Appl. Phys. Lett. 110, 161103 (2017).
[Crossref]

A. Al Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, Opt. Express 22, 31131 (2014).
[Crossref]

Engelsholm, R.

Feehan, J.

Feehan, J. S.

Feurer, T.

Fortin, V.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Fuerbach, A.

Gai, X.

Gao, J.

Gao, W.

Gattass, R.

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

Genest, J.

Girard, S.-L.

Grassani, D.

Grillet, C.

Gross, S.

Guo, W.

Hänsch, T.

A. Schliesser, N. Picqué, and T. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Heidt, A.

Horsten, R.

Hou, J.

Hou, Z.

Hu, J.

Hu, L.

Hu, T.

Hudson, D.

Ireland, M.

Jackson, S.

Jongste, J.

Jovanovic, N.

Judge, A.

D. Hudson, E. Mägi, A. Judge, S. Dekker, and B. Eggleton, Opt. Commun. 285, 4660 (2012).
[Crossref]

Kharitonov, S.

Kubat, I.

Lægsgaard, J.

Lawrence, J.

Li, L.

N. Abdukerim, L. Li, M. El Amraoui, Y. Messaddeq, and M. Rochette, Appl. Phys. Lett. 110, 161103 (2017).
[Crossref]

Li, X.

Li, Z.

Liao, M.

Liu, J.

Liu, K.

Luther-Davies, B.

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, Laser Photon. Rev. 8, 792 (2014).
[Crossref]

Madden, S.

Mägi, E.

D. Hudson, E. Mägi, A. Judge, S. Dekker, and B. Eggleton, Opt. Commun. 285, 4660 (2012).
[Crossref]

Marandi, A.

Markos, C.

Mastrigt, E.

Matsumoto, M.

Méchin, D.

Menyuk, C.

Messaddeq, Y.

N. Abdukerim, L. Li, M. El Amraoui, Y. Messaddeq, and M. Rochette, Appl. Phys. Lett. 110, 161103 (2017).
[Crossref]

A. Al Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, Opt. Express 22, 31131 (2014).
[Crossref]

Møller, U.

Moselund, P.

Moss, D.

Nagasaka, K.

Nguyen, V. Q.

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

Ohishi, Y.

Olivier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

Palomba, S.

Petersen, C.

Piché, M.

Picqué, N.

A. Schliesser, N. Picqué, and T. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Pijnenburg, M.

Plotnichenko, V.

Price, J.

Pureza, P. C.

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

Qi, S.

Read, A.

Reyes, A.

Richardson, D.

Rochette, M.

Rud Keiding, S.

Rudy, C.

Sanghera, J.

Sanghera, J. S.

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Seddon, A.

A. Seddon, Phys. Status Solidi B 250, 1020 (2013).
[Crossref]

Sharp, A.

Shaw, L.

Shaw, L. B.

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

Shi, H.

Sigrist, M.

Singh, N.

Suzuki, T.

Tan, F.

Tezuka, H.

Thøgersen, J.

Troles, J.

Trolès, J.

Tuan, T.

Urbach, H.

Vallée, R.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Vodopyanov, K.

Wang, P.

Wang, R.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, Laser Photon. Rev. 8, 792 (2014).
[Crossref]

Werdehausen, D.

Withford, M.

Xing, S.

Xue, T.

Xue, X.

Yang, W.

Yang, Z.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, Laser Photon. Rev. 8, 792 (2014).
[Crossref]

Yin, K.

Yu, Y.

Zhai, C.

Zhang, B.

Zhou, X.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Abdukerim, L. Li, M. El Amraoui, Y. Messaddeq, and M. Rochette, Appl. Phys. Lett. 110, 161103 (2017).
[Crossref]

IEEE Photon. J. (1)

C. Baker and M. Rochette, IEEE Photon. J. 4, 960 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, Laser Photon. Rev. 8, 792 (2014).
[Crossref]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Opt. Commun. (1)

D. Hudson, E. Mägi, A. Judge, S. Dekker, and B. Eggleton, Opt. Commun. 285, 4660 (2012).
[Crossref]

Opt. Express (18)

J. Hu, C. Menyuk, L. Shaw, J. Sanghera, and I. Aggarwal, Opt. Express 18, 6722 (2010).
[Crossref]

C. Baker and M. Rochette, Opt. Express 18, 12391 (2010).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. Rud Keiding, Opt. Express 20, 4887 (2012).
[Crossref]

R. Ahmad and M. Rochette, Opt. Express 20, 9572 (2012).
[Crossref]

R. Ahmad and M. Rochette, Opt. Express 20, 10095 (2012).
[Crossref]

A. Marandi, C. Rudy, V. Plotnichenko, E. Dianov, K. Vodopyanov, and R. Byer, Opt. Express 20, 24218 (2012).
[Crossref]

W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, Opt. Express 21, 19732 (2013).
[Crossref]

A. Heidt, J. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. Alam, and D. Richardson, Opt. Express 21, 24281 (2013).
[Crossref]

A. Reyes, Z. Hou, E. Mastrigt, R. Horsten, J. Jongste, M. Pijnenburg, H. Urbach, and N. Bhattacharya, Opt. Express 22, 18299 (2014).
[Crossref]

X. Li, W. Chen, T. Xue, J. Gao, W. Gao, L. Hu, and M. Liao, Opt. Express 22, 24179 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, Opt. Express 22, 24384 (2014).
[Crossref]

N. Abdukerim and M. Rochette, Opt. Express 24, 18931 (2016).
[Crossref]

C. Petersen, P. Moselund, C. Petersen, U. Møller, and O. Bang, Opt. Express 24, 749 (2016).
[Crossref]

J. Lægsgaard, Opt. Express 15, 16110 (2007).
[Crossref]

A. Al Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, Opt. Express 22, 31131 (2014).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B.-L. Davies, and O. Bang, Opt. Express 23, 3282 (2015).
[Crossref]

S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, and M. Withford, Opt. Express 23, 7946 (2015).
[Crossref]

C. Petersen, R. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, Opt. Express 25, 15336 (2017).
[Crossref]

Opt. Fiber Technol. (2)

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, Opt. Fiber Technol. 18, 345 (2012).
[Crossref]

D. Hudson, Opt. Fiber Technol. 20, 631 (2014).
[Crossref]

Opt. Lett. (5)

Optica (4)

Phys. Status Solidi B (1)

A. Seddon, Phys. Status Solidi B 250, 1020 (2013).
[Crossref]

Proc. SPIE (1)

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

Other (2)

https://www.miriad-tech.com .

J. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Layout of the laser cavity and the subsequent supercontinuum generation stage. The holmium laser output passes through an isolator ( > 40    dB suppression) and is focused into the core of the tapered fiber device using an f = 5    mm ZnSe objective lens. The output is collected using an identical lens and focused into a Miriad S3 spectrometer (Miriad Technologies) [36]. The inset shows the dispersion of both the untapered step-index fiber and the microwire section, which was calculated by solving the characteristic equation of an infinite cladding cylindrical waveguide to obtain the propagation constant β .

Fig. 2.
Fig. 2.

(a) Autocorrelation and (b) spectrum of the mode-locked laser. The pulse spectrum is centered at 2874 nm with an rms bandwidth of 47 nm. At 50 dB below the peak, the spectrum covers > 250    nm .

Fig. 3.
Fig. 3.

Tapered fiber device. Pulses are coupled into the hybrid fiber section, where the As 2 Se 3 core diameter is 14 µm. The transition sections are 1.6 cm long and the microwire region is 5 cm long with a core diameter of 3.0 µm.

Fig. 4.
Fig. 4.

Spectral expansion at increasing peak power (vertically offset for clarity). The resolution is 2 nm for wavelengths < 5.5    μm and 5 nm for longer wavelengths. The inset shows the mode profile in the microwire section (3 µm core diameter) at various wavelengths. The nonlinear parameter γ decreases by a factor of 20 from 5 to 11 µm.

Fig. 5.
Fig. 5.

Broadest supercontinuum generated (black) compared to a nonlinear Schrödinger equation simulation (red). The confinement factor (power in core/total power; blue dashed curve) drops significantly at long wavelengths.

Metrics