Abstract

We report on the experimental realization of an absolute single-photon source based on a single nitrogen vacancy (NV) center in a nanodiamond at room temperature and on the calculation of its absolute spectral photon flux from experimental data. The single-photon source was calibrated with respect to its photon flux and its spectral photon rate density. The photon flux was measured with a low-noise silicon photodiode traceable to the primary standard for optical flux, taking into account the absolute spectral power distribution using a calibrated spectroradiometer. The optical radiant flux is adjustable from 55 fW, which is almost the lowest detection limit for the silicon photodiode, and 75 fW, which is the saturation power of the NV center. These fluxes correspond to total photon flux rates between 190,000 photons per second and 260,000 photons per second, respectively. The single-photon emission purity is indicated by a g(2)(0) value, which is between 0.10 and 0.23, depending on the excitation power. To our knowledge, this is the first single-photon source absolutely calibrated with respect to its absolute optical radiant flux and spectral power distribution, traceable to the corresponding national standards via an unbroken traceability chain. The prospects for its application, e.g., for the detection efficiency calibration of single-photon detectors as well as for use as a standard photon source in the low photon flux regime, are promising.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent control of a single nitrogen-vacancy center spin in optically levitated nanodiamond

Robert M. Pettit, Levi P. Neukirch, Yi Zhang, and A. Nick Vamivakas
J. Opt. Soc. Am. B 34(6) C31-C35 (2017)

Absolute calibration of fiber-coupled single-photon detector

Tommaso Lunghi, Boris Korzh, Bruno Sanguinetti, and Hugo Zbinden
Opt. Express 22(15) 18078-18092 (2014)

Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices

Mohamed Almokhtar, Masazumi Fujiwara, Hideaki Takashima, and Shigeki Takeuchi
Opt. Express 22(17) 20045-20059 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21, 012002 (2010).
    [Crossref]
  2. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [Crossref]
  3. N. Sangouard and H. Zbinden, “What are single photons good for?” J. Mod. Opt. 59, 1458–1464 (2012).
    [Crossref]
  4. C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
    [Crossref]
  5. J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
    [Crossref]
  6. W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
    [Crossref]
  7. M. López, H. Hofer, and S. Kück, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique,” J. Mod. Opt. 62, 1732–1738 (2015).
    [Crossref]
  8. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
    [Crossref]
  9. J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 31, 5821–5828 (2008).
    [Crossref]
  10. G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
    [Crossref]
  11. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref]
  12. E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
    [Crossref]
  13. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
    [Crossref]

2016 (1)

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

2015 (1)

M. López, H. Hofer, and S. Kück, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique,” J. Mod. Opt. 62, 1732–1738 (2015).
[Crossref]

2014 (1)

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

2013 (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

2012 (2)

2011 (3)

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

2010 (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

2008 (1)

J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 31, 5821–5828 (2008).
[Crossref]

2007 (1)

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

2000 (1)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Agio, M.

Becher, C.

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Buller, G. S.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

Cheung, J. Y.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

Chunnilall, C. J.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

Collins, R. J.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

Degiovanni, I. P.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Fischer, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Fox, N. P.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

Gsell, S.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Hofer, H.

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

M. López, H. Hofer, and S. Kück, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique,” J. Mod. Opt. 62, 1732–1738 (2015).
[Crossref]

W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
[Crossref]

Hollenberg, L. C. L.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Jelezko, F.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Kück, S.

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

M. López, H. Hofer, and S. Kück, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique,” J. Mod. Opt. 62, 1732–1738 (2015).
[Crossref]

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

López, M.

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

M. López, H. Hofer, and S. Kück, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique,” J. Mod. Opt. 62, 1732–1738 (2015).
[Crossref]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Mountford, J.

J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 31, 5821–5828 (2008).
[Crossref]

Mountford, J. R.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

Müller, I.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Neu, E.

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Peters, S.

W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
[Crossref]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Porrovecchio, G.

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 31, 5821–5828 (2008).
[Crossref]

Riedrich-Möller, J.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Rodenberger, M.

W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
[Crossref]

Rodiek, B.

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

Sangouard, N.

N. Sangouard and H. Zbinden, “What are single photons good for?” J. Mod. Opt. 59, 1458–1464 (2012).
[Crossref]

Schmunk, W.

W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
[Crossref]

Schreck, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Sinclair, A. G.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Smid, M.

J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 31, 5821–5828 (2008).
[Crossref]

Smid, R.

J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 31, 5821–5828 (2008).
[Crossref]

Šmid, M.

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Thomas, P. J.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

Wang, J.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Woolliams, E. R.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

Wrachtrup, J.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Zbinden, H.

N. Sangouard and H. Zbinden, “What are single photons good for?” J. Mod. Opt. 59, 1458–1464 (2012).
[Crossref]

Appl. Opt. (1)

J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 31, 5821–5828 (2008).
[Crossref]

J. Mod. Opt. (4)

N. Sangouard and H. Zbinden, “What are single photons good for?” J. Mod. Opt. 59, 1458–1464 (2012).
[Crossref]

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54, 373 (2007).
[Crossref]

W. Schmunk, M. Rodenberger, S. Peters, H. Hofer, and S. Kück, “Radiometric calibration of single photon detectors by a single photon source based on NV-centers in diamond,” J. Mod. Opt. 58, 1252–1259 (2011).
[Crossref]

M. López, H. Hofer, and S. Kück, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique,” J. Mod. Opt. 62, 1732–1738 (2015).
[Crossref]

Meas. Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

Metrologia (1)

G. Porrovecchio, M. Šmid, M. López, H. Hofer, B. Rodiek, and S. Kück, “Comparison at the sub-100  fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique,” Metrologia 53, 1115–1122 (2016).
[Crossref]

New J. Phys. (1)

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[Crossref]

Opt. Eng. (1)

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53, 081910 (2014).
[Crossref]

Opt. Express (1)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Phys. Rev. Lett. (1)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of the confocal setup. Explanation of abbreviations: ND—neutral density filter; LL532—laser line filter for 532 nm laser emission; L1 and L2, lenses for beam expansion; DBS, dichroic beam splitter; FEL0550, long-pass filter 550 nm; FES0750 and FES0800, short-pass filters 750 and 800 nm, respectively. The optical fiber can be connected either to a detector, a spectrometer or a Hanbury Brown and Twiss interferometer (HBT).

Fig. 2.
Fig. 2.

Spectral responsivity sdet(λ) of the LOFD designed at the CMI [9,10].

Fig. 3.
Fig. 3.

Schematic overview of the necessary measurements, calibrations, and calculations for the characterization of the absolute NV-center-based single-photon source.

Fig. 4.
Fig. 4.

80  μm×80  μm scan of a sample taken with the Si-SPAD. The fluorescent light emitted by the NV-doped nanocrystals is color-coded by its intensity (counts/s). The scan is realized with an Si-SPAD. The background of approx. 30  kcounts/s is represented in blue. The red circle indicates the close up of the NV center with the best emission properties (approx. 572  kcounts/s). The elliptical shape is caused by the elliptical pump beam, arising from the non-perfect alignment, illuminating the area.

Fig. 5.
Fig. 5.

Spectrum of the NV-center emission given in absolute photon flux per wavelength Nph,λ(λ) (blue line) and in absolute radiant flux per wavelength Φλ(λ) (red line).

Fig. 6.
Fig. 6.

Normalized second-order correlation function of the single-photon source at different excitation powers: (a) excitation power 292 μW, (b) excitation power 690 μW, and (c) excitation power 1050 μW. The red curves are fits using a three-level model [11].

Fig. 7.
Fig. 7.

Left axis: Total number of photons of the NV center as a function of the excitation power of a 532 nm laser measured with the high-sensitivity photodiode detector built by the CMI. Right axis: Corresponding total radiant flux. The error bars correspond to the standard uncertainty. The red, green, and blue curves are the total photon flux, the NV-center photon flux, and the background photon flux, respectively, calculated from Eq. (13) using the fit parameters Nsat=240000  s1, Psat=100  μW, and m=27.6  μW1s1.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Uout=IdettintCint,
Srel(λ)=SNV(λ)/SNV(λ)dλSNV(λ)/λiSNV(λ)(λi+1λi).
sspec=Srel(λ)sdet(λ)dλλiSrel(λi)sdet(λi)(λi+1λi).
Φ=Idetsspec=UoutCintsspectint.
Nph=Φespec,
espec=hcλSrel(λ)dλλihcλiSrel(λi)(λi+1λi),
Φλ(λ)=ΦSrel(λ),
Nph,λ(λ)=Φλ(λ)eph(λ),
eph(λ)=hcλ.
sspec=(0.33798±0.00034)  AW,
espec=(2.8855±0.0029)×1019  J.
g(2)(τ)=1+c2exp(|τ|τ2)+c3exp(|τ|τ3),
Nph=Nsat1+PsatP+mP,

Metrics