Abstract

Terahertz quantum cascade laser sources based on intra-cavity frequency mixing are currently the only monolithic electrically pumped semiconductor devices that can operate in the 1–6 THz spectral range at room temperature. The introduction of the Cherenkov waveguide scheme in these devices grown on semi-insulating InP substrates enabled generation of tens of microwatts of average terahertz power output and wide spectral tunability. However, terahertz radiation outcoupling in these sources is still highly inefficient. Here we demonstrate that an application of the III–V-on-silicon hybrid laser concept to terahertz quantum cascade laser sources based on Cherenkov intra-cavity difference-frequency generation dramatically improves their output power and mid-infrared-to-terahertz conversion efficiency. The best-performing device transfer-printed on a float-zone high-resistivity silicon substrate produced 270 μW of peak power output at 3.5 THz at room temperature, a factor of 5 improvement over the best reference devices on a native semi-insulating InP substrate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation

Kazuue Fujita, Masahiro Hitaka, Akio Ito, Masamichi Yamanishi, Tatsuo Dougakiuchi, and Tadataka Edamura
Opt. Express 24(15) 16357-16365 (2016)

Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources

Atsushi Nakanishi, Kazuue Fujita, Kazuki Horita, and Hironori Takahashi
Opt. Express 27(3) 1884-1893 (2019)

High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi
Opt. Express 21(1) 968-973 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  3. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 38–47 (2011).
    [Crossref]
  4. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
    [Crossref]
  5. M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
    [Crossref]
  6. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200  K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866—3876 (2012).
    [Crossref]
  7. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
    [Crossref]
  8. M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90, 118002 (2015).
    [Crossref]
  9. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
    [Crossref]
  10. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
    [Crossref]
  11. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
    [Crossref]
  12. S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
  13. Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
    [Crossref]
  14. A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
    [Crossref]
  15. Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
    [Crossref]
  16. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
    [Crossref]
  17. Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
    [Crossref]
  18. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  19. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  20. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
    [Crossref]
  21. H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
    [Crossref]
  22. J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
    [Crossref]
  23. Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
    [Crossref]
  24. J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
    [Crossref]
  25. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
    [Crossref]
  26. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
    [Crossref]
  27. B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
    [Crossref]
  28. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

2016 (3)

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

2015 (3)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90, 118002 (2015).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

2014 (4)

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

2013 (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

2012 (4)

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200  K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866—3876 (2012).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

2011 (1)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 38–47 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

2009 (2)

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

2008 (1)

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

2007 (4)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

2006 (1)

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[Crossref]

2001 (1)

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[Crossref]

Adams, R. W.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Aellen, T.

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[Crossref]

Amann, M. C.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Audet, R. M.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
[Crossref]

Ban, D.

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
[Crossref]

Beck, M.

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[Crossref]

Belkin, M. A.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90, 118002 (2015).
[Crossref]

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Belyanin, A.

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Berggren, J.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Bewley, W. W.

Boehm, G.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Botez, D.

Bour, D.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Bower, C.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

Bowers, J. E.

Capasso, F.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90, 118002 (2015).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Chan, C. W. I.

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

Chuwongin, S.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Cohen, O.

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Corbett, B.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

Corzine, S.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Davenport, M. L.

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Demmerle, F.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

Diehl, L.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Dupont, E.

Faist, J.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[Crossref]

Fang, A. W.

Fathololoumi, S.

Fischer, M.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Gini, E.

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[Crossref]

Grasse, C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Gubbins, M. A.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

Hammar, M.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Heydari, D.

Höfler, G.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Hu, Q.

Jang, M.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Jiang, A.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

Jiang, Y.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

Jirauschek, C.

Jones, R.

Jung, S.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

Justice, J.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

Khanna, S. P.

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

Kim, C. S.

Kim, J. H.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

Kirch, J.

Kumar, S.

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 38–47 (2011).
[Crossref]

Laframboise, S. R.

Lee, B. G.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Linfield, E. H.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

Liu, H. C.

Lu, Q.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref]

Lu, Q. Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
[Crossref]

Ma, Z.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

MacArthur, J.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Mátyás, A.

Mawst, L. J.

Meitl, M.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

Merritt, C. D.

Meyer, J. R.

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

Mooney, M. B.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Paniccia, M. J.

Park, H.

Peters, J.

Pflugl, C.

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

Pflügl, C.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Razeghi, M.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
[Crossref]

Sengupta, S.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref]

Seo, J.-H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Shuai, Y.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[Crossref]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Slivken, S.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
[Crossref]

Spott, A.

Stanton, E. J.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Troccoli, M.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Vijayraghavan, K.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Vurgaftman, I.

Wang, Q. J.

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

Wang, X.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

Wasilewski, Z. R.

Wittmann, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Wu, D.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref]

Xie, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

Yang, H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Yang, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Zhang, H. A.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Zhao, D.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Zhou, W.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23, 8462–8475 (2015).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Appl. Phys. Lett. (6)

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101 (2008).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čherenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[Crossref]

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, “Widely tunable room temperature semiconductor terahertz source,” Appl. Phys. Lett. 105, 201102 (2014).
[Crossref]

A. Jiang, S. Jung, Y. Jiang, K. Vijayraghavan, J. H. Kim, and M. A. Belkin, “Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays,” Appl. Phys. Lett. 106, 261107 (2015).
[Crossref]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[Crossref]

Electron. Lett. (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1  W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Höfler, and F. Capasso, “Distributed feedback quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[Crossref]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 38–47 (2011).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[Crossref]

J. Opt. (1)

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9  THz tuning range,” J. Opt. 16, 094002 (2014).
[Crossref]

Nat. Commun. (2)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref]

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).

Nat. Photonics (5)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 615–620 (2012).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 612–616 (2012).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Scr. (1)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90, 118002 (2015).
[Crossref]

Proc. IEEE (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

Sci. Rep. (2)

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref]

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref]

Other (1)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Refractive indices and absorption coefficients of SI InP and FZ HR Si in the THz range.
Fig. 2.
Fig. 2. Cherenkov THz DFG emission in QCLs. (a) The schematic of the Cherenkov emission in a DFG-THz QCL. (b) The ratio of THz power of the Si-hybrid device to THz power of the InP reference device at different cavity lengths. (c), (d) Three-dimensional COMSOL simulation of the THz power intensity outcoupled from the (c) SI InP device to air and the (d) FZ HR Si device to air. The yellow lines are the power streamlines indicating the propagation direction of THz power outcoupled to equal points on the air monitor. All simulations assume uniform mid-IR pumps intensity in the laser cavity.
Fig. 3.
Fig. 3. Transfer-printing process. (a) Fully processed QCL on InP. (b) SU-8 supporting elements are formed. (c) Devices with the SU-8 supporting elements are bonded on a piece of a glass slide with crystal glue. (d) The InP substrate is removed. (e) The QCL is bonded to a Si substrate with SU-8 adhesive. (f) The glass slide and crystal glue are removed.
Fig. 4.
Fig. 4. Scanning electron microscope images of devices’ facets. (a) The reference InP device. (b) The Si-hybrid device.
Fig. 5.
Fig. 5. Emission spectra. Mid-IR (top) and THz (bottom) spectra of the Si-hybrid device (22 μm width and 4.2 mm length) biased under pulsed current (15 kHz repetition rate and 40 ns pulse width) at 20°C.
Fig. 6.
Fig. 6. Room-temperature device performance. (a) Mid-IR light-current-voltage characteristic of the InP device (left) and the Si device (right) operated in pulsed mode at 20°C. The blue, red, and black indicate the long wavelength pump ( λ long ), the short wavelength pump ( λ short ), and the device voltage, respectively. (b) THz power output (blue squares) and the mid-IR-to-THz conversion efficiency (red circles) of the InP device (open symbols) and the Si device (closed symbols).
Fig. 7.
Fig. 7. Performance of the unpolished Si device. (Top) Mid-IR light-current-voltage characteristic of the 22 μm wide and 4.2 mm long device operated in pulsed mode at 20°C. The blue, red, and black indicate the long wavelength pump ( λ long ), the short wavelength pump ( λ short ), and the device voltage, respectively. (Bottom) THz power (blue squares) and the mid-IR-to-THz conversion efficiency (red circles) of the device under the same operating conditions. The inset displays the simulated magnetic field ( H z ) of the THz output of the device. THz radiation is out-coupled from the facet at an angle of approximately 40°.
Fig. 8.
Fig. 8. Slow axis far fields of (a) the unpolished Si device, (b) the polished (15°) Si device and (c) the polished (30°) InP device. The open circles and solid lines indicate the measured and calculated results, respectively. The reference angle (0°) is defined as the beam direction parallel to the laser cavity. The polarity of the angle is described in the inset.

Tables (1)

Tables Icon

Table 1. THz DFG-QCL Device Performance at 10  A of Pump Currenta

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P THz = η ext I 0 0 L cav e α sub x cos θ c d x ,

Metrics