Abstract

Optical circulators that unidirectionally route light could lead to bidirectional operations in applications in data centers and telecommunications, as well as sensors. In this work, to the best of our knowledge, we present the first realization of integrated optical circulators on silicon that are electrically driven and dynamically reconfigurable. The proposed device utilizes silicon microrings with a bonded magneto-optic cladding alongside an integrated electromagnet for nonreciprocal behavior. This novel approach does not use a permanent magnet and, for this reason, it is more attractive for packaging and further integration with lasers and other photonic devices. We use this device architecture to demonstrate 4- and 6-port optical circulators with up to 14.4 dB of isolation and propose a framework to extend the design to an arbitrary number of ports. Finally, we demonstrate that it is possible to switch the electromagnet and reconfigure the circulator on a sub-nanosecond timescale, potentially adding a new level of device functionality.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited]

Duanni Huang, Paolo Pintus, and John E. Bowers
Opt. Mater. Express 8(9) 2471-2483 (2018)

Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers
Opt. Express 21(4) 5041-5052 (2013)

Versatile broadband polarization-independent optical circulators for nanophotonic integrated circuits

Curtis J. Firby, PoHan Chang, Amr S. Helmy, and Abdulhakem Y. Elezzabi
J. Opt. Soc. Am. B 35(7) 1504-1513 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
    [Crossref]
  2. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
    [Crossref]
  3. P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett. 25, 1973–1976 (2013).
    [Crossref]
  4. K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
    [Crossref]
  5. H. Krishnaswamy and N. Reikarimian, “Magnetic-free non-reciprocity based on staggered commutation,” Nat. Commun. 7, 11217 (2016).
    [Crossref]
  6. B. Lee and Y. Jeong, Interrogation Techniques for Fiber Grating Sensors and the Theory of Fiber Gratings (Marcel Dekker, 2002).
  7. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
    [Crossref]
  8. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
    [Crossref]
  9. L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
    [Crossref]
  10. M. J. Heck, S. Srinivasan, M. L. Davenport, and J. E. Bowers, “Integrated microwave photonic isolators: theory, experimental realization and application in a unidirectional ring mode-locked laser diode,” Photonics 2, 957–968 (2015).
  11. Y. Yang, C. Galland, Y. Liu, K. Tan, R. Ding, Q. Li, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Experimental demonstration of broadband Lorentz non-reciprocity in an integrable photonic architecture based on Mach–Zehnder modulators,” Opt. Express 22, 17409–17422 (2014).
    [Crossref]
  12. C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett. 36, 4293–4295 (2011).
    [Crossref]
  13. C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express 22, 4493–4498 (2014).
    [Crossref]
  14. C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
    [Crossref]
  15. C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
    [Crossref]
  16. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
    [Crossref]
  17. L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
    [Crossref]
  18. Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
    [Crossref]
  19. B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2014).
  20. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
    [Crossref]
  21. X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
  22. A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 1–8 (2014).
  23. T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
    [Crossref]
  24. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
    [Crossref]
  25. M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  26. T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
    [Crossref]
  27. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
    [Crossref]
  28. Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” J. Appl. Phys. 53, 022202 (2014).
    [Crossref]
  29. Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Express 20, 18440–18448 (2012).
    [Crossref]
  30. Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2015).
    [Crossref]
  31. K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett. 25, 721–723 (2013).
    [Crossref]
  32. S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
    [Crossref]
  33. S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
    [Crossref]
  34. M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
    [Crossref]
  35. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21, 5041–5052 (2013).
    [Crossref]
  36. M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
    [Crossref]
  37. D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.
  38. D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
    [Crossref]
  39. M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
    [Crossref]
  40. P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett. 23, 1670–1672 (2011).
    [Crossref]
  41. P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Express 22, 15737–15756 (2014).
    [Crossref]
  42. K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightwave Technol. 34, 1699–1705 (2016).
    [Crossref]
  43. P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).
  44. K. Padmaraji and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
    [Crossref]
  45. I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
    [Crossref]
  46. P. Pintus, P. Contu, P. G. Raponi, I. Cerutti, and N. Andriolli, “Silicon-based all-optical multi microring network-on-chip,” Opt. Lett. 39, 797–800 (2014).
    [Crossref]

2016 (4)

H. Krishnaswamy and N. Reikarimian, “Magnetic-free non-reciprocity based on staggered commutation,” Nat. Commun. 7, 11217 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightwave Technol. 34, 1699–1705 (2016).
[Crossref]

2015 (7)

M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2015).
[Crossref]

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

M. J. Heck, S. Srinivasan, M. L. Davenport, and J. E. Bowers, “Integrated microwave photonic isolators: theory, experimental realization and application in a unidirectional ring mode-locked laser diode,” Photonics 2, 957–968 (2015).

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref]

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

2014 (10)

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2014).

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express 22, 4493–4498 (2014).
[Crossref]

Y. Yang, C. Galland, Y. Liu, K. Tan, R. Ding, Q. Li, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Experimental demonstration of broadband Lorentz non-reciprocity in an integrable photonic architecture based on Mach–Zehnder modulators,” Opt. Express 22, 17409–17422 (2014).
[Crossref]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 1–8 (2014).

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” J. Appl. Phys. 53, 022202 (2014).
[Crossref]

K. Padmaraji and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Express 22, 15737–15756 (2014).
[Crossref]

P. Pintus, P. Contu, P. G. Raponi, I. Cerutti, and N. Andriolli, “Silicon-based all-optical multi microring network-on-chip,” Opt. Lett. 39, 797–800 (2014).
[Crossref]

2013 (8)

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett. 25, 721–723 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21, 5041–5052 (2013).
[Crossref]

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett. 25, 1973–1976 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

2012 (4)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Express 20, 18440–18448 (2012).
[Crossref]

2011 (4)

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett. 36, 4293–4295 (2011).
[Crossref]

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett. 23, 1670–1672 (2011).
[Crossref]

2010 (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

2009 (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

2008 (1)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

2004 (1)

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

2001 (1)

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

1996 (1)

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

Aimon, N. M.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

Andriolli, N.

P. Pintus, P. Contu, P. G. Raponi, I. Cerutti, and N. Andriolli, “Silicon-based all-optical multi microring network-on-chip,” Opt. Lett. 39, 797–800 (2014).
[Crossref]

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett. 25, 1973–1976 (2013).
[Crossref]

Baehr-Jones, T.

Baets, R.

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Bauters, J. F.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Bergman, K.

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Block, A. D.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 1–8 (2014).

Bowers, J. E.

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

M. J. Heck, S. Srinivasan, M. L. Davenport, and J. E. Bowers, “Integrated microwave photonic isolators: theory, experimental realization and application in a unidirectional ring mode-locked laser diode,” Photonics 2, 957–968 (2015).

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett. 25, 1973–1976 (2013).
[Crossref]

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21, 5041–5052 (2013).
[Crossref]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett. 23, 1670–1672 (2011).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).

Byrnes, A.

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

Cadieu, F. J.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

Cerutti, I.

Chang, B.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Chen, J.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Chen, L.

Contu, P.

Dai, D.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

Davenport, M.

Davenport, M. L.

M. J. Heck, S. Srinivasan, M. L. Davenport, and J. E. Bowers, “Integrated microwave photonic isolators: theory, experimental realization and application in a unidirectional ring mode-locked laser diode,” Photonics 2, 957–968 (2015).

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Di Pasquale, F.

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett. 25, 1973–1976 (2013).
[Crossref]

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21, 5041–5052 (2013).
[Crossref]

Ding, R.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Doerr, C. R.

Dong, C. H.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Dong, J.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref]

Doylend, J. K.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Du, Q.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

Ducellier, T.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Dulal, P.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 1–8 (2014).

Dupuis, N.

Eggleton, B. J.

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Eto, Y.

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Fan, S.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Fang, K.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

Fratello, V. J.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Fu, W.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Furuya, K.

Galland, C.

Gao, D.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref]

Ghosh, S.

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

Goto, T.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

Guo, G. C.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Haga, Y.

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

Heck, M. J.

M. J. Heck, S. Srinivasan, M. L. Davenport, and J. E. Bowers, “Integrated microwave photonic isolators: theory, experimental realization and application in a unidirectional ring mode-locked laser diode,” Photonics 2, 957–968 (2015).

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Hegde, H.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

Hochberg, M.

Hseih, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Hu, J.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Huang, D.

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).

Hulme, J.

Inoue, M.

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

Ito, M.

Jain, S.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Jeong, Y.

B. Lee and Y. Jeong, Interrogation Techniques for Fiber Grating Sensors and the Theory of Fiber Gratings (Marcel Dekker, 2002).

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Ju, G.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Kashuba, A. B.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Kato, K.

Keyvaninia, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref]

Kim, D. H.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

King, F.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Kobayashi, K.

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

Komljenovic, T.

Krishnaswamy, H.

H. Krishnaswamy and N. Reikarimian, “Magnetic-free non-reciprocity based on staggered commutation,” Nat. Commun. 7, 11217 (2016).
[Crossref]

Kroemer, H.

Kurczveil, G.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Lee, B.

B. Lee and Y. Jeong, Interrogation Techniques for Fiber Grating Sensors and the Theory of Fiber Gratings (Marcel Dekker, 2002).

Levy, M.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

Li, Q.

Liang, D.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Lipson, M.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Liu, A. Y.

Liu, L.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref]

Liu, Y.

Lu, B.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Mao, C. H.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Mao, L.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Mitsuya, K.

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett. 25, 721–723 (2013).
[Crossref]

Miura, K.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2015).
[Crossref]

Mizumoto, T.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightwave Technol. 34, 1699–1705 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2015).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” J. Appl. Phys. 53, 022202 (2014).
[Crossref]

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2014).

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett. 25, 721–723 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref]

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Express 20, 18440–18448 (2012).
[Crossref]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).

Nakagawa, S.

M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
[Crossref]

Nemoto, T.

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Nussenzveig, P.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

Onbasli, M. C.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

Padmaraji, K.

K. Padmaraji and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Pant, R.

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Pintus, P.

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

P. Pintus, P. Contu, P. G. Raponi, I. Cerutti, and N. Andriolli, “Silicon-based all-optical multi microring network-on-chip,” Opt. Lett. 39, 797–800 (2014).
[Crossref]

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Express 22, 15737–15756 (2014).
[Crossref]

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21, 5041–5052 (2013).
[Crossref]

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett. 25, 1973–1976 (2013).
[Crossref]

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett. 23, 1670–1672 (2011).
[Crossref]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Poulton, C. G.

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Raponi, P. G.

Reikarimian, N.

H. Krishnaswamy and N. Reikarimian, “Magnetic-free non-reciprocity based on staggered commutation,” Nat. Commun. 7, 11217 (2016).
[Crossref]

Roelkens, G.

S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38, 965–967 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Ross, C. A.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Santis, C. T.

Seaton, N. C.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 1–8 (2014).

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Shen, Z.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Shi, Y.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

Shirato, Y.

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” J. Appl. Phys. 53, 022202 (2014).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Express 20, 18440–18448 (2012).
[Crossref]

Shoji, Y.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightwave Technol. 34, 1699–1705 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2015).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” J. Appl. Phys. 53, 022202 (2014).
[Crossref]

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett. 25, 721–723 (2013).
[Crossref]

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Express 20, 18440–18448 (2012).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).

Siegmann, H. C.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Spott, A.

Srinivasan, S.

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

M. J. Heck, S. Srinivasan, M. L. Davenport, and J. E. Bowers, “Integrated microwave photonic isolators: theory, experimental realization and application in a unidirectional ring mode-locked laser diode,” Photonics 2, 957–968 (2015).

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Stadler, B. J.

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 1–8 (2014).

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2014).

Stamm, C.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Stanton, E. J.

Steel, M. J.

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

Stöhr, J.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Sun, X. Y.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

Tai, K.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Takamura, Y.

M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
[Crossref]

Tan, K.

Tang, Y.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Tien, M. C.

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett. 23, 1670–1672 (2011).
[Crossref]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

Tudosa, I.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Tzuang, L. D.

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

Van Roy, W.

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Vermeulen, D.

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Weller, D.

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Wheeldon, J.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Wolfe, R.

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

Xie, J.

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Yanaga, M.

M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
[Crossref]

Yang, Y.

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Yu, Z.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

Zhang, C.

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).

Zhang, L.

Zhang, X.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref]

Zhang, Y. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Zheng, A.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref]

Zhong, C.

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.

Zou, C. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

ACS Photon. (1)

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).

Appl. Phys. Express (1)

M. Yanaga, Y. Shoji, Y. Takamura, S. Nakagawa, and T. Mizumoto, “Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits,” Appl. Phys. Express 8, 082201 (2015).
[Crossref]

Appl. Phys. Lett. (1)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

IEEE Photon. J. (3)

A. D. Block, P. Dulal, B. J. Stadler, and N. C. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 1–8 (2014).

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photon. J. 6, 1–15 (2014).

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (5)

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett. 25, 1973–1976 (2013).
[Crossref]

K. Tai, B. Chang, J. Chen, C. H. Mao, T. Ducellier, J. Xie, L. Mao, and J. Wheeldon, “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett. 13, 320–322 (2001).
[Crossref]

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett. 25, 721–723 (2013).
[Crossref]

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, “Integrated optical isolators with sputter-deposited thin-film magnets,” IEEE Photon. Technol. Lett. 8, 903–905 (1996).
[Crossref]

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett. 23, 1670–1672 (2011).
[Crossref]

J. Appl. Phys. (2)

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” J. Appl. Phys. 53, 022202 (2014).
[Crossref]

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113, 17A939 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2015).
[Crossref]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Nanophotonics (2)

K. Padmaraji and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

Nat. Commun. (2)

H. Krishnaswamy and N. Reikarimian, “Magnetic-free non-reciprocity based on staggered commutation,” Nat. Commun. 7, 11217 (2016).
[Crossref]

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Nat. Photonics (5)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photonics 9, 388–392 (2015).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, and M. Vanwolleghem, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009).
[Crossref]

L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, “Non-reciprocal phase shift induced by an effective magnetic flux for light,” Nat. Photonics 8, 701–705 (2014).
[Crossref]

Nature (1)

I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stöhr, G. Ju, B. Lu, and D. Weller, “The ultimate speed of magnetic switching in granular recording media,” Nature 428, 831–833 (2004).
[Crossref]

Opt. Express (6)

Opt. Express. (1)

C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express. 20, 21235–21246 (2012).
[Crossref]

Opt. Lett. (3)

Photonics (1)

M. J. Heck, S. Srinivasan, M. L. Davenport, and J. E. Bowers, “Integrated microwave photonic isolators: theory, experimental realization and application in a unidirectional ring mode-locked laser diode,” Photonics 2, 957–968 (2015).

Phys. Rev. Lett. (1)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109, 033901 (2012).
[Crossref]

Sci. Rep. (1)

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref]

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Other (3)

B. Lee and Y. Jeong, Interrogation Techniques for Fiber Grating Sensors and the Theory of Fiber Gratings (Marcel Dekker, 2002).

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in European Conference on Optical Communication (2016).

D. Huang, P. Pintus, C. Zhong, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1K-2.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2227 KB)      Supplementary material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. We depict the spectrum of the through port of the ring for the two operating configurations of the circulator. Light entering from port 1 will couple into the CW mode (the transmittance spectrum is plotted in the red dashed line) and light entering from port 2 will couple into the CCW mode (the transmittance spectrum is plotted in the blue continuous line). For the sake of simplicity, we do not depict the transmittance spectrum at the drop port, as it can be assumed to have the same resonant characteristics. By flipping the magnetic field, the circulation is reversed at the same operating wavelength.
Fig. 2.
Fig. 2. (a) 3D prospective view of the device, (b) cross-sectional mode profile, and (c) microscope image of the fabricated device. The silicon waveguide is 230 nm tall and 600 nm wide, and the Ce:YIG is 400 nm thick. A thin layer of silica ( 10    nm ) is assumed to have formed between the waveguide and the bonded layer due to the plasma activation [24].
Fig. 3.
Fig. 3. (a) Radial magnetic field map (in Oersted) in the Ce:YIG layer for an injected current I = 200    mA ( V = 190    mV ), as well as its linear dependence with the injected current. (b) Temperature variation (in Celsius) in the silicon layer for an injected current I = 200    mA , and its quadratic dependence with the injected current. For the device under test, a current of 200 mA provides a radial magnetic field of about 17 Oe in the Ce:YIG layer, while the temperature increment is about 10°C in the silicon microring.
Fig. 4.
Fig. 4. (a) Measured and (b) simulated transmission spectra of the CW and CCW resonances at the through and drop ports. The curves are labeled by the corresponding entry in the scattering matrix. Due to fabrication inaccuracies in the waveguide, the measured spectra are shifted with respect to the measured ones. The thermal heating can be effectively used to control the resonance position, compensating the variation of the waveguide cross-section size.
Fig. 5.
Fig. 5. Measured and predicted reciprocal resonance shift (thermal effect) and nonreciprocal resonance split (MO effect) have been reported as a function of the applied current.
Fig. 6.
Fig. 6. Magneto-optic rise time of the device is measured to be 400 ps using a 1 Gbps PRBS31 bit stream. The eye stays open up to 2.5 Gbps, which agrees well with the measured rise time.
Fig. 7.
Fig. 7. Four possible configurations of the proposed 6-port circulator. The white arrows show the radially inward or outward magnetic field, while the black arrows show the circulation direction of light for each configuration.
Fig. 8.
Fig. 8. (a) Measured and (b) simulated transmission spectra of the 6-port circulator. The deviations between the two are largely due to fabrication imperfections in the ring, which leads to a different driving current in the two rings in order to align the resonances. In addition, the experimental spectra S 61 , S 1 6 , S 34 , and S 43 show a much larger bandwidth, which is due to a larger than expected coupling coefficient ( K > 10.45 % ), which is most likely due to a smaller than desired ring-waveguide coupling gap.

Tables (3)

Tables Icon

Table 1. Experimental Transmittance Data [dB] of the Circulator at the Working Wavelength of λ = 1558.45    nm

Tables Icon

Table 2. Simulated and Experimental Isolation Ratio and Crosstalka at the Working Wavelength of λ = 1558.45    nm for Different Values of Δ λ MO [nm]

Tables Icon

Table 3. Experimental Transmittance Data [dB] of the 6-Port Circulator at the Working Wavelength λ = 1557.6    nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( A 1 A 2 A 3 A 4 ) = ( 0 S 12 0 S 14 S 21 0 S 23 0 0 S 32 0 S 34 S 41 0 S 43 0 ) ( A 1 + A 2 + A 3 + A 4 + ) ,
S 12 = S 34 , S 14 = S 32 , S 41 = S 23 , S 43 = S 21 .
S i j ( λ ± Δ λ MO / 2 ) = S j i ( λ Δ λ MO / 2 ) ,

Metrics