Abstract

Quantum key distribution (QKD) permits information-theoretically secure transmission of digital encryption keys, assuming that the behavior of the devices employed for the key exchange can be reliably modeled and predicted. Remarkably, no assumptions have to be made on the capabilities of an eavesdropper other than that she is bounded by the laws of nature, thus making the security of QKD “unconditional.” However, unconditional security is hard to achieve in practice. For example, any experimental realization can only collect finite data samples, leading to vulnerabilities against coherent attacks, the most general class of attacks, and for some protocols the theoretical proof of robustness against these attacks is still missing. For these reasons, in the past many QKD experiments have fallen short of implementing an unconditionally secure protocol and have instead considered limited attacking capabilities by the eavesdropper. Here, we explore the security of QKD against coherent attacks in the most challenging environment: the long-distance transmission of keys. We demonstrate that the BB84 protocol can provide positive key rates for distances up to 240 km without multiplexing of conventional signals, and up to 200 km with multiplexing. Useful key rates can be achieved even for the longest distances, using practical thermo-electrically cooled single-photon detectors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Security of subcarrier wave quantum key distribution against the collective beam-splitting attack

G. P. Miroshnichenko, A. V. Kozubov, A. A. Gaidash, A. V. Gleim, and D. B. Horoshko
Opt. Express 26(9) 11292-11308 (2018)

Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields
Opt. Express 16(23) 18790-18797 (2008)

100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors

Eleni Diamanti, Hiroki Takesue, Carsten Langrock, M. M. Fejer, and Yoshihisa Yamamoto
Opt. Express 14(26) 13073-13082 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Wiesner, “Conjugate coding,” Sigact News 15(1), 78–88 (1983).
    [Crossref]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computing Systems and Signal Processing (IEEE, 1984), pp. 175–179.
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref]
  4. N. Lütkenhaus and A. J. Shields, “Focus on quantum cryptography: theory and practice,” New J. Phys. 11, 045005 (2009).
    [Crossref]
  5. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
    [Crossref]
  6. H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
    [Crossref]
  7. E. Diamanti, H.-K. Lo, B. Qi, and Z. L. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
    [Crossref]
  8. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [Crossref]
  9. A. Vakhitov, V. Makarov, and D. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).
    [Crossref]
  10. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
    [Crossref]
  11. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 9, 73–82 (2007).
  12. V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
    [Crossref]
  13. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
    [Crossref]
  14. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
    [Crossref]
  15. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
    [Crossref]
  16. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
    [Crossref]
  17. F. Xu, B. Qi, and H. K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
    [Crossref]
  18. J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
    [Crossref]
  19. D. Mayers, “Quantum key distribution and string oblivious transfer in noisy channels,” in Advances in Cryptology: Proceedings of CRYPTO, N. Koblitz, ed., Lecture Notes in Computer Science (Springer, 1996), Vol. 1109, pp. 343–357.
  20. E. Biham and T. Mor, “Security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 78, 2256–2259 (1997).
    [Crossref]
  21. H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
    [Crossref]
  22. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
    [Crossref]
  23. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  24. I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A 461, 207–235 (2005).
    [Crossref]
  25. H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).
    [Crossref]
  26. M. Hayashi, “Practical evaluation of security for quantum key distribution,” Phys. Rev. A 74, 022307 (2006).
    [Crossref]
  27. T. Meyer, H. Kampermann, K. Kleinmann, and D. Bruß, “Finite key analysis for symmetric attacks in quantum key distribution,” Phys. Rev. A 74, 042340 (2006).
    [Crossref]
  28. M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A 76, 012329 (2007).
    [Crossref]
  29. V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
    [Crossref]
  30. M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013).
    [Crossref]
  31. D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
    [Crossref]
  32. Y. Liu, Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, K. Chen, Z.-B. Chen, and J.-W. Pan, “Decoy-state quantum key distribution with polarized photons over 200  km,” Opt. Express 18, 8587–8594 (2010).
    [Crossref]
  33. N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100  km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express 19, 10632–10639 (2011).
    [Crossref]
  34. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
    [Crossref]
  35. M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
    [Crossref]
  36. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  37. B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
    [Crossref]
  38. H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
    [Crossref]
  39. C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
    [Crossref]
  40. M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,” New J. Phys. 16, 063009 (2014).
    [Crossref]
  41. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
    [Crossref]
  42. K. Inoue, “Differential phase-shift quantum key distribution systems,” IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015).
  43. J. González-Payo, F. J. Fraile-Peláez, and M. Curty, “Sequential attacks against coherent one-way quantum key distribution,” in International Conference on Quantum Cryptography (QCrypt), Tokyo, Japan, September28, 2015.
  44. T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
    [Crossref]
  45. T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
    [Crossref]
  46. S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
    [Crossref]
  47. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref]
  48. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
    [Crossref]
  49. J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
    [Crossref]
  50. M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
    [Crossref]
  51. A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.
  52. F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
    [Crossref]
  53. B. Miquel and H. Takesue, “Observation of 1.5  μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11, 045006 (2009).
    [Crossref]
  54. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [Crossref]
  55. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref]
  56. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref]
  57. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
    [Crossref]
  58. M. Tomamichel, C. C.-W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
    [Crossref]
  59. L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
    [Crossref]
  60. M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
    [Crossref]
  61. J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Sci. Appl. 4, e286 (2015).
    [Crossref]
  62. L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
    [Crossref]
  63. R. Radebaugh, “Cryocoolers: the state of the art and recent developments,” J. Phys. Condens. Matter 21, 164219 (2009).
    [Crossref]
  64. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
    [Crossref]
  65. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
    [Crossref]
  66. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
    [Crossref]
  67. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
    [Crossref]
  68. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
    [Crossref]

2016 (2)

E. Diamanti, H.-K. Lo, B. Qi, and Z. L. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

2015 (8)

M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
[Crossref]

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

K. Inoue, “Differential phase-shift quantum key distribution systems,” IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015).

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Sci. Appl. 4, e286 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

2014 (6)

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,” New J. Phys. 16, 063009 (2014).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

2013 (3)

M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

2012 (6)

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

M. Tomamichel, C. C.-W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

2011 (4)

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100  km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express 19, 10632–10639 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

2010 (4)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

F. Xu, B. Qi, and H. K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Y. Liu, Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, K. Chen, Z.-B. Chen, and J.-W. Pan, “Decoy-state quantum key distribution with polarized photons over 200  km,” Opt. Express 18, 8587–8594 (2010).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

2009 (6)

R. Radebaugh, “Cryocoolers: the state of the art and recent developments,” J. Phys. Condens. Matter 21, 164219 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

B. Miquel and H. Takesue, “Observation of 1.5  μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11, 045006 (2009).
[Crossref]

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

N. Lütkenhaus and A. J. Shields, “Focus on quantum cryptography: theory and practice,” New J. Phys. 11, 045005 (2009).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

2008 (2)

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref]

2007 (3)

M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A 76, 012329 (2007).
[Crossref]

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 9, 73–82 (2007).

2006 (4)

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

M. Hayashi, “Practical evaluation of security for quantum key distribution,” Phys. Rev. A 74, 022307 (2006).
[Crossref]

T. Meyer, H. Kampermann, K. Kleinmann, and D. Bruß, “Finite key analysis for symmetric attacks in quantum key distribution,” Phys. Rev. A 74, 042340 (2006).
[Crossref]

2005 (6)

I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A 461, 207–235 (2005).
[Crossref]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

2003 (1)

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

2001 (1)

A. Vakhitov, V. Makarov, and D. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).
[Crossref]

2000 (2)

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref]

1999 (1)

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

1997 (2)

E. Biham and T. Mor, “Security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 78, 2256–2259 (1997).
[Crossref]

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

1983 (1)

S. Wiesner, “Conjugate coding,” Sigact News 15(1), 78–88 (1983).
[Crossref]

Acerbi, F.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Anisimov, A.

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
[Crossref]

Ardehali, M.

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

Baek, B.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computing Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Biham, E.

E. Biham and T. Mor, “Security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 78, 2256–2259 (1997).
[Crossref]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computing Systems and Signal Processing (IEEE, 1984), pp. 175–179.

Bratzik, S.

M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

Brunner, N.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

Bruß, D.

M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013).
[Crossref]

T. Meyer, H. Kampermann, K. Kleinmann, and D. Bruß, “Finite key analysis for symmetric attacks in quantum key distribution,” Phys. Rev. A 74, 042340 (2006).
[Crossref]

Cai, W.-Q.

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Chapuran, T. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Chau, H. F.

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

Chen, C.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

Chen, K.

Chen, L.-K.

Chen, T.-Y.

Chen, W.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

Chen, Z.-B.

Choi, I.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

Comandar, L. C.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

Cova, S.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Curty, M.

C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

J. González-Payo, F. J. Fraile-Peláez, and M. Curty, “Sequential attacks against coherent one-way quantum key distribution,” in International Conference on Quantum Cryptography (QCrypt), Tokyo, Japan, September28, 2015.

Dallmann, N.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Devetak, I.

I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A 461, 207–235 (2005).
[Crossref]

Diamanti, E.

E. Diamanti, H.-K. Lo, B. Qi, and Z. L. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Dixon, A. R.

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Duhme, J.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Dynes, J.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

Dynes, J. F.

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Edwards, T.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Elser, D.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Entwistle, M.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Eraerds, P.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Fasel, S.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Fraile-Peláez, F. J.

J. González-Payo, F. J. Fraile-Peláez, and M. Curty, “Sequential attacks against coherent one-way quantum key distribution,” in International Conference on Quantum Cryptography (QCrypt), Tokyo, Japan, September28, 2015.

Franz, T.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Fröhlich, B.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
[Crossref]

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Fujiwara, M.

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Fung, C.-H. F.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 9, 73–82 (2007).

Furrer, F.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Gehring, T.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Gerhardt, I.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Gisin, N.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

M. Tomamichel, C. C.-W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

González-Payo, J.

J. González-Payo, F. J. Fraile-Peláez, and M. Curty, “Sequential attacks against coherent one-way quantum key distribution,” in International Conference on Quantum Cryptography (QCrypt), Tokyo, Japan, September28, 2015.

Goodman, M. S.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Guo, G.-C.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

Guo, J.-F.

Hadfield, R. H.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Han, Z.-F.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

Händchen, V.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Harrington, J. W.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Hayashi, M.

M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,” New J. Phys. 16, 063009 (2014).
[Crossref]

M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A 76, 012329 (2007).
[Crossref]

M. Hayashi, “Practical evaluation of security for quantum key distribution,” Phys. Rev. A 74, 022307 (2006).
[Crossref]

Hjelme, D.

A. Vakhitov, V. Makarov, and D. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).
[Crossref]

Honjo, T.

Houlmann, R.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Huang, J.-Z.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

Hughes, R. J.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Hwang, W.-Y.

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref]

Inamori, H.

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).
[Crossref]

Inoue, K.

K. Inoue, “Differential phase-shift quantum key distribution systems,” IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015).

Inoue, S.

Itzler, M. A.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Sci. Appl. 4, e286 (2015).
[Crossref]

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Jackel, J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Jiang, X.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Jouguet, P.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Kaiser, S.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

Kampermann, H.

M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013).
[Crossref]

T. Meyer, H. Kampermann, K. Kleinmann, and D. Bruß, “Finite key analysis for symmetric attacks in quantum key distribution,” Phys. Rev. A 74, 042340 (2006).
[Crossref]

Kawamura, S.

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Kleinmann, K.

T. Meyer, H. Kampermann, K. Kleinmann, and D. Bruß, “Finite key analysis for symmetric attacks in quantum key distribution,” Phys. Rev. A 74, 042340 (2006).
[Crossref]

Korzh, B.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

Kraus, B.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Kunz-Jacques, S.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Kurtsiefer, C.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Lamas-Linares, A.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Legré, M.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Leuchs, G.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

Leverrier, A.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Li, H.-W.

Li, M. J.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Liang, H.

Lim, C. C. W.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

Lim, C. C.-W.

C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

M. Tomamichel, C. C.-W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref]

Liu, Q.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Liu, S.-B.

Liu, Y.

Lo, H. K.

F. Xu, B. Qi, and H. K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Lo, H.-K.

E. Diamanti, H.-K. Lo, B. Qi, and Z. L. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 9, 73–82 (2007).

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

Lucamarini, M.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
[Crossref]

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Lunghi, T.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

Lütkenhaus, N.

N. Lütkenhaus and A. J. Shields, “Focus on quantum cryptography: theory and practice,” New J. Phys. 11, 045005 (2009).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

Lydersen, L.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Ma, X.

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 9, 73–82 (2007).

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

Makarov, V.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
[Crossref]

A. Vakhitov, V. Makarov, and D. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).
[Crossref]

Marquardt, C.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

Mayers, D.

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).
[Crossref]

D. Mayers, “Quantum key distribution and string oblivious transfer in noisy channels,” in Advances in Cryptology: Proceedings of CRYPTO, N. Koblitz, ed., Lecture Notes in Computer Science (Springer, 1996), Vol. 1109, pp. 343–357.

McCabe, K. P.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

McNown, S. R.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Mertz, M.

M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013).
[Crossref]

Meyer, T.

T. Meyer, H. Kampermann, K. Kleinmann, and D. Bruß, “Finite key analysis for symmetric attacks in quantum key distribution,” Phys. Rev. A 74, 042340 (2006).
[Crossref]

Miquel, B.

B. Miquel and H. Takesue, “Observation of 1.5  μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11, 045006 (2009).
[Crossref]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

E. Biham and T. Mor, “Security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 78, 2256–2259 (1997).
[Crossref]

Moroder, T.

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

Nakayama, R.

M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,” New J. Phys. 16, 063009 (2014).
[Crossref]

Nam, S.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Namekata, N.

Nolan, D.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Nordholt, J. E.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Pacher, C.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Pan, J.-W.

Patel, K. A.

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Peng, C.-Z.

Penty, R. V.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

Peters, N. A.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Peterson, C. G.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Pirandola, S.

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

Plews, A.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Preskill, J.

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref]

Qi, B.

E. Diamanti, H.-K. Lo, B. Qi, and Z. L. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

F. Xu, B. Qi, and H. K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 9, 73–82 (2007).

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

Qian, L.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

Radebaugh, R.

R. Radebaugh, “Cryocoolers: the state of the art and recent developments,” J. Phys. Condens. Matter 21, 164219 (2009).
[Crossref]

Radig, C.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

Renner, R.

M. Tomamichel, C. C.-W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref]

Ribordy, G.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rice, P. R.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Rosenberg, D.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Runser, R. J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Sajeed, S.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

Sanguinetti, B.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Sasaki, M.

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Sato, H.

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

Schnabel, R.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Sharpe, A. W.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Shields, A. J.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
[Crossref]

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

N. Lütkenhaus and A. J. Shields, “Focus on quantum cryptography: theory and practice,” New J. Phys. 11, 045005 (2009).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Shor, P. W.

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref]

Skaar, J.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
[Crossref]

Slomkowski, K.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Straw, A.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

Stucki, D.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

Sun, S.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

Takesue, H.

N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100  km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express 19, 10632–10639 (2011).
[Crossref]

B. Miquel and H. Takesue, “Observation of 1.5  μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11, 045006 (2009).
[Crossref]

Tam, S.

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Tam, S. W.-B.

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

Tam, W. W.-S.

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

Tamaki, K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

Tang, Z.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

Tanizawa, Y.

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Thew, R.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Thinh, L. P.

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Tokura, Y.

Toliver, P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Tomamichel, M.

M. Tomamichel, C. C.-W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref]

Tosi, A.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Townsend, P. D.

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
[Crossref]

Tyagi, K. T.

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

Vakhitov, A.

A. Vakhitov, V. Makarov, and D. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).
[Crossref]

Walenta, N.

C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Wan, X.

Wang, J.

Wang, J.-H.

Wang, S.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

Wang, X.-B.

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

Weedbrook, C.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

Wei, K.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

Werner, R. F.

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

Wiechers, C.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Wiesner, S.

S. Wiesner, “Conjugate coding,” Sigact News 15(1), 78–88 (1983).
[Crossref]

Winter, A.

I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A 461, 207–235 (2005).
[Crossref]

Wittmann, C.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

Xu, F.

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

F. Xu, B. Qi, and H. K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

Yang, L.

Yin, Z.-Q.

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2  GHz clock quantum key distribution over 260  km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

Yuan, Z. L.

E. Diamanti, H.-K. Lo, B. Qi, and Z. L. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
[Crossref]

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Zappa, F.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Zbinden, H.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Sci. Appl. 4, e286 (2015).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zhang, J.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Sci. Appl. 4, e286 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

Zhou, Z.

Appl. Phys. Lett. (3)

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

L. C. Comandar, B. Fröhlich, M. Lucamarini, K. A. Patel, A. W. Sharpe, J. F. Dynes, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Room temperature single-photon detectors for high bit rate quantum key distribution,” Appl. Phys. Lett. 104, 021101 (2014).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

Electron. Lett. (1)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
[Crossref]

Eur. Phys. J. D (1)

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Inoue, “Differential phase-shift quantum key distribution systems,” IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015).

M. Lucamarini, J. F. Dynes, B. Fröhlich, Z. L. Yuan, and A. J. Shields, “Security bounds for efficient decoy-state quantum key distribution,” IEEE J. Sel. Top. Quantum Electron. 21, 197–204 (2015).
[Crossref]

J. Appl. Phys. (1)

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

J. Crypt. (1)

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

J. Mod. Opt. (2)

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

A. Vakhitov, V. Makarov, and D. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).
[Crossref]

J. Phys. Condens. Matter (1)

R. Radebaugh, “Cryocoolers: the state of the art and recent developments,” J. Phys. Condens. Matter 21, 164219 (2009).
[Crossref]

Light: Sci. Appl. (1)

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Sci. Appl. 4, e286 (2015).
[Crossref]

Nat. Commun. (3)

M. Tomamichel, C. C.-W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref]

T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

Nat. Photonics (4)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

New J. Phys. (8)

D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys. 11, 045009 (2009).
[Crossref]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011).
[Crossref]

N. Lütkenhaus and A. J. Shields, “Focus on quantum cryptography: theory and practice,” New J. Phys. 11, 045005 (2009).
[Crossref]

F. Xu, B. Qi, and H. K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,” New J. Phys. 16, 063009 (2014).
[Crossref]

B. Miquel and H. Takesue, “Observation of 1.5  μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11, 045006 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1  Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

npj Quantum Inf. (1)

E. Diamanti, H.-K. Lo, B. Qi, and Z. L. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (11)

M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013).
[Crossref]

M. Hayashi, “Practical evaluation of security for quantum key distribution,” Phys. Rev. A 74, 022307 (2006).
[Crossref]

T. Meyer, H. Kampermann, K. Kleinmann, and D. Bruß, “Finite key analysis for symmetric attacks in quantum key distribution,” Phys. Rev. A 74, 042340 (2006).
[Crossref]

M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A 76, 012329 (2007).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
[Crossref]

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

C. C.-W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

Phys. Rev. Lett. (11)

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

E. Biham and T. Mor, “Security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 78, 2256–2259 (1997).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref]

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref]

Phys. Rev. X (1)

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
[Crossref]

Proc. R. Soc. A (1)

I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A 461, 207–235 (2005).
[Crossref]

Quantum Inf. Comput. (1)

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 9, 73–82 (2007).

Rev. Mod. Phys. (2)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sci. Rep. (2)

B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. L. Yuan, and A. J. Shields, “Quantum secured gigabit optical access networks,” Sci. Rep. 5, 18121 (2015).
[Crossref]

J. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

Science (1)

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

Sigact News (1)

S. Wiesner, “Conjugate coding,” Sigact News 15(1), 78–88 (1983).
[Crossref]

Other (4)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computing Systems and Signal Processing (IEEE, 1984), pp. 175–179.

D. Mayers, “Quantum key distribution and string oblivious transfer in noisy channels,” in Advances in Cryptology: Proceedings of CRYPTO, N. Koblitz, ed., Lecture Notes in Computer Science (Springer, 1996), Vol. 1109, pp. 343–357.

J. González-Payo, F. J. Fraile-Peláez, and M. Curty, “Sequential attacks against coherent one-way quantum key distribution,” in International Conference on Quantum Cryptography (QCrypt), Tokyo, Japan, September28, 2015.

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “77 day field trial of high speed quantum key distribution with implementation security,” contributed talk at Quantum Cryptography (QCrypt), Washington, DC, September12, 2016.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (372 KB)      Methods

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Selection of recent long-distance QKD experiments. The graph plots the temperature of the single-photon detectors used in the experiments over the maximum attenuation that could be tolerated. Following [53], we select only demonstrations that fulfill the practical bit rate limit of >1 bit per second (bps). Two detector types are considered: avalanche photodiode (APD) single-photon detectors, which can be cooled electrically, and superconducting nanowire single-photon detectors (SNSPDs), which have to be cooled cryogenically. Reference [37] uses APDs that are cooled with a cryocooler. The data points are shape-coded to highlight their security level: square, security against individual attacks; circles, collective attacks; triangles, coherent attacks. Open symbols refer to experiment considering only the asymptotic limit, whereas filled symbols take finite size effects into account.
Fig. 2.
Fig. 2. Detector performance and secure bit rate without multiplexing of conventional signals. (a) Dark count rate as a function of APD temperature for three different devices. The dark count rate decreases by about a factor of two per 10°C. Error bars correspond to one standard deviation from 15 consecutive measurements and are in most cases smaller than the reported data points. The data points follow a color code that suggests red (blue) shades for higher (lower) temperatures and is consistent with the color code in Fig. 3. Please see Supplement 1 for more details on single-photon detectors. (b) Secure bit rate as a function of distance for three different variants of the BB84 protocol. Black circles correspond to BB84coll [35], which is secure up to collective attacks in the finite-size scenario. The key rates for BB84coh(1) [39] (upward red triangles) and BB84coh(2) [50] (downward blue triangles) are calculated from Eqs. (1) and (2), respectively. The dashed line extrapolates the reduction of the secure key rate purely from attenuation in the fiber and provides an indication of the regime where the dark count rate plays a dominant role.
Fig. 3.
Fig. 3. Secure bit rate with multiplexing of conventional signals. (a) Schematic of the multiplexing setup to transmit conventional signals together with the quantum channel on the same fiber. At the transmitter side an 8-channel DWDM module combines the quantum signal with an optical clock and a CW laser to simulate a data channel. After transmission over the long-distance fiber, a drop filter separates the quantum signal from the conventional signals. The conventional signals are amplified before separating them with a DWDM de-multiplexer. The quantum channel is filtered with a 25 GHz DWDM filter to suppress Raman noise. Also shown are (b) secure bit rate and (c) quantum bit error rate as functions of receive power of the simulated data channel in front of the low-noise amplifier for 100, 150, and 200 km of low-loss fiber transmission. The solid lines are the result of a simulation model (see Supplement 1). The color code is the same as in Fig. 2, with red (blue) shades suggesting higher (lower) temperatures set in the detectors.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Scoh(1)=n_0+n_1[1h(e¯ph)]λECΔ.
Scoh(2)=n_0+n_1n¯1h(e¯ph)λECΔ.

Metrics