Abstract

It has been known for four decades that high finesse millimeter-scale optical cavities can produce high-performance, compact optical gyroscopes. Yet, a practical implementation of such a device has been hindered by multiple technical challenges, including Rayleigh scattering and optical nonlinearity of the cavity material. In this Letter we report on the implementation of an integrated passive gyroscope using a monolithic cavity characterized by 7 mm diameter, finesse of 105, and Rayleigh backscattering less than 10 ppm. The device is characterized with quantum noise limited angle random walk of 0.02  deg/h1/2, and bias drift of 3  deg/h, corresponding to detection of rotation-originated optical path change of 1.3×1016  cm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range

Qin Wang, Chuanchuan Yang, Xinyue Wang, and Ziyu Wang
Opt. Lett. 38(24) 5422-5425 (2013)

Fiber-optic gyroscopes: from design to production [Invited]

Jagannath Nayak
Appl. Opt. 50(25) E152-E161 (2011)

Fiber resonator gyroscope: sensitivity and thermal nonreciprocity

David M. Shupe
Appl. Opt. 20(2) 286-289 (1981)

References

  • View by:
  • |
  • |
  • |

  1. G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).
  2. E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
    [Crossref]
  3. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [Crossref]
  4. H. J. Arditty and H. C. Lefevre, Opt. Lett. 6, 401 (1981).
    [Crossref]
  5. W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
    [Crossref]
  6. G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
    [Crossref]
  7. K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
    [Crossref]
  8. J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).
  9. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).
  10. N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
    [Crossref]
  11. C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).
  12. M. S. Weinberg, IEEE International Symposium on Inertial Sensors and Systems (ISISS) (2015), pp. 1–5.
  13. G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
    [Crossref]
  14. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, Adv. Opt. Photon. 2, 370 (2010).
    [Crossref]
  15. J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.
  16. K. Suzuki, K. Takiguchi, and K. Hotate, J. Lightwave Technol. 18, 66 (2000).
    [Crossref]
  17. G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.
  18. H. Mao, H. Ma, and Z. Jin, Opt. Express 19, 4632 (2011).
    [Crossref]
  19. H. Ma, J. Zhang, L. Wang, and Z. Jin, Opt. Express 23, 15088 (2015).
    [Crossref]
  20. J. Wang, L. Feng, Y. Tang, and Y. Zhi, Opt. Lett. 40, 155 (2015).
    [Crossref]
  21. H. Ma, J. Zhang, L. Wang, Y. Lu, D. Ying, and Z. Jin, Opt. Lett. 40, 5862 (2015).
    [Crossref]
  22. W. C. Goss, R. Goldstein, M. D. Nelson, H. T. Fearnehaugh, and O. G. Ramer, Appl. Opt. 19, 852 (1980).
    [Crossref]
  23. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 198 (1981).
    [Crossref]
  24. W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, Opt. Lett. 8, 540 (1983).
    [Crossref]
  25. S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
    [Crossref]
  26. J. L. Davis and S. Ezekiel, Opt. Lett. 6, 505 (1981).
    [Crossref]
  27. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, Opt. Lett. 6, 569 (1981).
    [Crossref]
  28. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, Opt. Lett. 8, 644 (1983).
    [Crossref]
  29. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
    [Crossref]
  30. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
    [Crossref]
  31. G. B. Malykin, Phys. Usp. 57, 714 (2014).
    [Crossref]
  32. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
    [Crossref]

2015 (4)

2014 (1)

G. B. Malykin, Phys. Usp. 57, 714 (2014).
[Crossref]

2013 (1)

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

2011 (1)

2010 (1)

2007 (1)

2006 (1)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

2005 (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

2000 (1)

1998 (1)

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

1997 (1)

G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
[Crossref]

1983 (2)

1981 (4)

1980 (1)

1977 (1)

S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[Crossref]

1976 (1)

1967 (1)

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

1963 (1)

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

1913 (1)

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

Abebe, M.

Acar, C.

C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).

Alonzo, J.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Arditty, H. J.

Armenise, M. N.

Ayazi, F.

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Balsamo, S. R.

S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[Crossref]

Bergh, R. A.

Bise, R. T.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Boyu, L.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Burns, W. K.

Campanella, C. E.

Chao, L.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Ciminelli, C.

Davis, D. T. M.

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

Davis, J. L.

Dell’Olio, F.

DiMarcello, F.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Ezekiel, S.

Fearnehaugh, H. T.

Feng, L.

Fucheng, C.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Goldstein, R.

Goss, W. C.

Hakimi, F.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Hotate, K.

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Jin, Z.

Ke, S.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Le, C.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Lefevre, H. C.

López-Higuera, J. M.

J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

Lu, Y.

Ma, H.

Macek, W. M.

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Malykin, G. B.

G. B. Malykin, Phys. Usp. 57, 714 (2014).
[Crossref]

Mao, H.

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Meyer, R. E.

Moeller, R. P.

Monberg, E. M.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Najafi, K.

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Nelson, M. D.

Post, E. J.

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Prentiss, M. G.

Qiu, T.

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Ramer, O. G.

Sagnac, G.

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

Sanders, G. A.

G. A. Sanders, M. G. Prentiss, and S. Ezekiel, Opt. Lett. 6, 569 (1981).
[Crossref]

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Schreiber, K. U.

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

Shaw, H. J.

Shkel, A.

C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).

Shorthill, R. W.

Stedman, G. E.

G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
[Crossref]

Stockert, T.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Stowe, D. W.

Strandjord, L. K.

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Strekalov, D.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Suzuki, K.

Takiguchi, K.

Tang, Y.

Tawney, J.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Tekippe, V. J.

Trevor, D. J.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Vali, V.

Villarruel, C. A.

Wang, J.

Wang, L.

Weinberg, M. S.

M. S. Weinberg, IEEE International Symposium on Inertial Sensors and Systems (ISISS) (2015), pp. 1–5.

Wells, J.-P. R.

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

Willig, R. L.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

Yazdi, N.

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Ying, D.

Zhang, J.

Zhanshe, G.

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Zhi, Y.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Ezekiel and S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[Crossref]

W. M. Macek and D. T. M. Davis, Appl. Phys. Lett. 2, 67 (1963).
[Crossref]

C. R. Acad. Sci. (1)

G. Sagnac, C. R. Acad. Sci. 157, 708 (1913).

IEEE J. Sel. Top. Quantum Electron (1)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
[Crossref]

J. Lightwave Technol. (1)

Microsyst. Technol. (1)

G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke, Microsyst. Technol. 21, 2053 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

Phys. Rev. A (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).
[Crossref]

Phys. Usp. (1)

G. B. Malykin, Phys. Usp. 57, 714 (2014).
[Crossref]

Proc. IEEE (1)

N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
[Crossref]

Rep. Prog. Phys. (1)

G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
[Crossref]

Rev. Mod. Phys. (1)

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Rev. Sci. Instrum. (1)

K. U. Schreiber and J.-P. R. Wells, Rev. Sci. Instrum. 84, 041101 (2013).
[Crossref]

Other (6)

J. M. López-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002).

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 2014).

C. Acar and A. Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (Springer, 2008).

M. S. Weinberg, IEEE International Symposium on Inertial Sensors and Systems (ISISS) (2015), pp. 1–5.

J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, Optical Fiber Sensors (Optical Society of America, 2006), paper ME8.

G. A. Sanders, L. K. Strandjord, and T. Qiu, Optical Fiber Sensors (Optical Society of America, 2006), paper ME6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the experimental setup. A frequency modulated semiconductor laser is locked to the CCW mode of a crystalline WGMR by using the PDH technique. The rotation signal is obtained by measuring the phase delay of the modulation signal interacting with the CW resonator mode.
Fig. 2.
Fig. 2. (a) Drawing and (b) photograph of the assembled gyroscope unit.
Fig. 3.
Fig. 3. Measured sensitivity of the gyroscope. The inset shows a time trace of the signal measured when the gyroscope is at rest. The short-term uncertainty of the angular speed due to ARW is defined as T1/2 ARW (T is the averaging time). ARW is evaluated by finding the crossing of the log scale data set with a line proportional to T1/2 [11]. For instance, if the line reaches 1  deg/h sensitivity at T=1s, the ARW is (1/60)  deg/h1/2 Bias drift is evaluated by finding a line proportional to T0 that limits the data set from below.
Fig. 4.
Fig. 4. Equivalent change of the resonator diameter corresponding to the measurement sensitivity of 1  deg/h.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δΩ=2πaλn0Ω,
Δa=aδΩω0=a2cn0Ω.
B˙cw=[i(δ0δΩ)+γ]Bcw+iβBccw+ig[|Bcw|2+2|Bccw|2]Bcw+Fcw,
B˙ccw=[i(δ0+δΩ)+γ]Bccw+iβBcw+ig[|Bccw|2+2|Bcw|2]Bccw+Fccw,
Boutcw,ccw=Fcw,ccwτ/2γc+2γcτBcw,ccw,
δΩshift=gPγcω(|κ|21)+β2(|κ|21)cosφ+β2γ0sin(2φ),
δΩ2γ02>2[ωP+2  g2Pγ04ω]Δf.

Metrics