Abstract

Graphene has emerged as a promising candidate for optoelectronic applications due to its broadband absorption and ultrafast carrier mobility. However, its prominent disadvantages, i.e., the zero bandgap and ultrafast carrier lifetime, limit its usage in optoelectronic applications. Although patterning graphene into nanoribbons is an effective strategy to open a bandgap, it still remains a challenge to reduce the surface and edge scattering and recombination of the photoexcited carriers. Here, we fabricated an all-carbon graphene nanoribbon-C60 hybrid nanostructure that is able to achieve a high photoresponsivity of 0.4 A/W under mid-infrared laser illumination at room temperature. Such a high performance is achieved through the high electron trapping efficiency of the C60 film as deposited onto 10 nm wide graphene nanoribbons. This all-carbon hybrid photodetector paves the way toward achieving flexible and broadband photodetectors for various applications such as imaging, remote optical sensing, and infrared camera sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-performance graphene photodetector using interfacial gating

Xitao Guo, Wenhui Wang, Haiyan Nan, Yuanfang Yu, Jie Jiang, Weiwei Zhao, Jinhuan Li, Zainab Zafar, Nan Xiang, Zhonghua Ni, Weida Hu, Yumeng You, and Zhenhua Ni
Optica 3(10) 1066-1070 (2016)

Optical properties of terahertz/infrared photodetector based on bilayer graphene nanoribbons with field-effect transistor structure

Ali Dinarvand, Vahid Ahmadi, and Ghafar Darvish
J. Opt. Soc. Am. B 33(5) 891-897 (2016)

Electro-optical properties of new structure photodetectors based on graphene nanoribbons: an ab initio study

Mehran Balarastaghi, Vahid Ahmadi, and Ghafar Darvish
J. Opt. Soc. Am. B 33(11) 2368-2373 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
    [Crossref]
  2. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
    [Crossref]
  3. M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
    [Crossref]
  4. X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2, 468–471 (2015).
    [Crossref]
  5. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref]
  6. S. F. Shi, X. Xu, D. C. Ralph, and P. L. McEuen, “Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors,” Nano Lett. 11, 1814–1818 (2011).
    [Crossref]
  7. D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
    [Crossref]
  8. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
    [Crossref]
  9. Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
    [Crossref]
  10. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
    [Crossref]
  11. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
    [Crossref]
  12. A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85, 115438 (2012).
    [Crossref]
  13. M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
    [Crossref]
  14. X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
    [Crossref]
  15. N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
    [Crossref]
  16. K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
    [Crossref]
  17. C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
    [Crossref]
  18. Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
    [Crossref]
  19. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
    [Crossref]
  20. S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
    [Crossref]
  21. Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
    [Crossref]
  22. F. Sols, F. Guinea, and A. H. C. Neto, “Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
    [Crossref]
  23. B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, “Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons,” Adv. Mater. 23, 5419–5424 (2011).
    [Crossref]
  24. P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
    [Crossref]
  25. D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
    [Crossref]
  26. J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
    [Crossref]
  27. H. Jussila, H. Yang, N. Granqvist, and Z. Sun, “Surface plasmon resonance for characterization of large-area atomic-layer graphene film,” Optica 3, 151–158 (2016).
    [Crossref]
  28. S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
    [Crossref]
  29. K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
    [Crossref]
  30. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
    [Crossref]
  31. Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
    [Crossref]
  32. S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
    [Crossref]
  33. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
    [Crossref]
  34. J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
    [Crossref]
  35. R. Rivelino and F. de Brito Mota, “Band gap and density of states of the hydrated C60 fullerene system at finite temperature,” Nano Lett. 7, 1526–1531 (2007).
    [Crossref]
  36. S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Lett. 12, 3887–3892 (2012).
    [Crossref]
  37. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
    [Crossref]
  38. G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
    [Crossref]

2016 (1)

2015 (7)

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2, 468–471 (2015).
[Crossref]

X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
[Crossref]

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

2014 (5)

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

2013 (5)

P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
[Crossref]

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

2012 (9)

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85, 115438 (2012).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
[Crossref]

S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Lett. 12, 3887–3892 (2012).
[Crossref]

Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

2011 (4)

B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, “Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons,” Adv. Mater. 23, 5419–5424 (2011).
[Crossref]

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

S. F. Shi, X. Xu, D. C. Ralph, and P. L. McEuen, “Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors,” Nano Lett. 11, 1814–1818 (2011).
[Crossref]

2008 (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

2007 (2)

R. Rivelino and F. de Brito Mota, “Band gap and density of states of the hydrated C60 fullerene system at finite temperature,” Nano Lett. 7, 1526–1531 (2007).
[Crossref]

F. Sols, F. Guinea, and A. H. C. Neto, “Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
[Crossref]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

2002 (2)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Ago, H.

P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
[Crossref]

Ahn, G.

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
[Crossref]

Ahn, J.-H.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Ajayan, P. M.

Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Asbahi, M.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Avouris, P.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Ayzner, A. L.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Badioli, M.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Bao, X.

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

Bao, Z.

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

Beck, J. H.

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Brongersma, M. L.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Brus, L. E.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Chen, K.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Chen, W.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Chitara, B.

B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, “Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons,” Adv. Mater. 23, 5419–5424 (2011).
[Crossref]

Cho, B. J.

S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Lett. 12, 3887–3892 (2012).
[Crossref]

Cho, J. H.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Choi, S.-H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Chu, H.-S.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

de Arquer, F. P. G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

de Brito Mota, F.

R. Rivelino and F. de Brito Mota, “Band gap and density of states of the hydrated C60 fullerene system at finite temperature,” Nano Lett. 7, 1526–1531 (2007).
[Crossref]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Dong, Z.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Engel, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Faist, J.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Fang, L.

Fang, Z.

Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Ferrari, A. C.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Ferreira, A.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85, 115438 (2012).
[Crossref]

Fong, S. W.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Fu, Q.

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Gan, X.

Garcia de Abajo, F. J.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Gaudreau, L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Goh, W. P.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Granqvist, N.

Grigorenko, A. N.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Guinea, F.

F. Sols, F. Guinea, and A. H. C. Neto, “Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Ham, M.-H.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Han, L.

Han, M. Y.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
[Crossref]

Heinz, T. F.

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Hippalgaonkar, K.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Hone, J.

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Hu, X.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Hu, Z.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Huang, Z.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Hwang, E.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Jang, C. W.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Jang, S. K.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Jeon, J.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Jin, L.

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

Jnawali, G.

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Jo, P. S.

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

Joo, S. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Jussila, H.

Kang, J.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Kang, S. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Kats, M. A.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

Kim, C. O.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Kim, H.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Kim, J. H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Kim, J. M.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Kim, K.

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

Kim, P.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
[Crossref]

Kim, S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Kim, S. J.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Kong, J.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

Konstantatos, G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Koppens, F. H. L.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Krupanidhi, S. B.

B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, “Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons,” Adv. Mater. 23, 5419–5424 (2011).
[Crossref]

Krupke, R.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Kwon, J.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Kymissis, I.

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Lau, S. P.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Lee, B. H.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Lee, C.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Lee, J. E.

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
[Crossref]

Lee, J. S.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Lee, J. Y.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Lee, K. K.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Lee, S.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Lee, T. H.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

Lee, Y.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Lee, Y. S.

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
[Crossref]

Li, J.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Li, X.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Liang, G.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Lin, J.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Lin, L.

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

Liu, N.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

Liu, T.

X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Liu, Y.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Liu, Z.

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Lohneysen, H. V.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Lombardo, A.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Loncar, M.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

Mao, D.

Maultzsch, J.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

McEuen, P. L.

S. F. Shi, X. Xu, D. C. Ralph, and P. L. McEuen, “Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors,” Nano Lett. 11, 1814–1818 (2011).
[Crossref]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Meng, B.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Moon, K.-J.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Mueller, T.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Myoung, J.-M.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Nam, J. H.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Nanot, S.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

Navickaite, G.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

Neto, A. H. C.

F. Sols, F. Guinea, and A. H. C. Neto, “Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
[Crossref]

Nishi, Y.

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Novoselov, K. S.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Ogawa, Y.

P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
[Crossref]

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Panchakarla, L. S.

B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, “Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons,” Adv. Mater. 23, 5419–5424 (2011).
[Crossref]

Park, J. H.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Park, J. K.

S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Lett. 12, 3887–3892 (2012).
[Crossref]

Park, S.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Park, Y. J.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Peng, H.

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

Peres, N. M. R.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85, 115438 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Petrone, N.

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Pitner, G.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Pospischil, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Ra, C.-H.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Ralph, D. C.

S. F. Shi, X. Xu, D. C. Ralph, and P. L. McEuen, “Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors,” Nano Lett. 11, 1814–1818 (2011).
[Crossref]

Rao, C. N. R.

B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, “Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons,” Adv. Mater. 23, 5419–5424 (2011).
[Crossref]

Rao, Y.

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Ren, T.-L.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

Ribeiro, R. M.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85, 115438 (2012).
[Crossref]

Rivelino, R.

R. Rivelino and F. de Brito Mota, “Band gap and density of states of the hydrated C60 fullerene system at finite temperature,” Nano Lett. 7, 1526–1531 (2007).
[Crossref]

Rogalski, A.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
[Crossref]

Ross, C. A.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Ryu, S.

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
[Crossref]

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
[Crossref]

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Salleo, A.

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

Santos, E. J. G.

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Schwartz, G.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

Shankar, R.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

Shen, Y.

X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
[Crossref]

Shi, S. F.

S. F. Shi, X. Xu, D. C. Ralph, and P. L. McEuen, “Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors,” Nano Lett. 11, 1814–1818 (2011).
[Crossref]

Shim, J.

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
[Crossref]

Shin, D. H.

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

Solís-Fernández, P.

P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
[Crossref]

Sols, F.

F. Sols, F. Guinea, and A. H. C. Neto, “Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
[Crossref]

Son, J. G.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Son, M.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Song, S. M.

S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Lett. 12, 3887–3892 (2012).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Sow, C. H.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Stauber, T.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85, 115438 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Steiner, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Strano, M. S.

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Sul, O. J.

S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Lett. 12, 3887–3892 (2012).
[Crossref]

Sun, Z.

H. Jussila, H. Yang, N. Granqvist, and Z. Sun, “Surface plasmon resonance for characterization of large-area atomic-layer graphene film,” Optica 3, 151–158 (2016).
[Crossref]

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Tai, G.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Tan, S.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Tian, H.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

Tielrooij, K.-J.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

Tok, J. B. H.

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

Tsuji, M.

P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
[Crossref]

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Vosgueritchian, M.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Wang, F.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Wang, H.

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

Wang, Q.

X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
[Crossref]

Wang, Q. J.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Wang, Y.

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2, 468–471 (2015).
[Crossref]

Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Wang, Y. M.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Wee, A. T. S.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Wei, D.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Woessner, A.

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

Wu, D.

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

Wu, T.

X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
[Crossref]

Xie, L.

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

Xu, X.

S. F. Shi, X. Xu, D. C. Ralph, and P. L. McEuen, “Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors,” Nano Lett. 11, 1814–1818 (2011).
[Crossref]

Yan, F.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Yan, K.

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

Yang, H.

Yang, J. K. W.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

Yao, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

Yoo, W. J.

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Yoshida, K.

P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
[Crossref]

Yu, S. H.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

Yu, X.

X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Zhao, C.

Zhao, J.

Zhou, Y.

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

Zhu, D.

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

ACS Nano (4)

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, “Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse,” ACS Nano 8, 8285–8291 (2014).
[Crossref]

K. Kim, T. H. Lee, E. J. G. Santos, P. S. Jo, A. Salleo, Y. Nishi, and Z. Bao, “Structural and electrical investigation of C60–graphene vertical heterostructures,” ACS Nano 9, 5922–5928 (2015).
[Crossref]

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 4123–4130 (2011).
[Crossref]

G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, and T. F. Heinz, “Observation of ground- and excited-state charge transfer at the C60/graphene interface,” ACS Nano 9, 7175–7185 (2015).
[Crossref]

Adv. Mater. (6)

S. Park, S. J. Kim, J. H. Nam, G. Pitner, T. H. Lee, A. L. Ayzner, H. Wang, S. W. Fong, M. Vosgueritchian, Y. J. Park, M. L. Brongersma, and Z. Bao, “Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor,” Adv. Mater. 27, 759–765 (2015).
[Crossref]

Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and pbs quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, “Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons,” Adv. Mater. 23, 5419–5424 (2011).
[Crossref]

P. Solís-Fernández, K. Yoshida, Y. Ogawa, M. Tsuji, and H. Ago, “Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene,” Adv. Mater. 25, 6562–6568 (2013).
[Crossref]

J. G. Son, M. Son, K.-J. Moon, B. H. Lee, J.-M. Myoung, M. S. Strano, M.-H. Ham, and C. A. Ross, “Sub-10  nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography,” Adv. Mater. 25, 4723–4728 (2013).
[Crossref]

Infrared Phys. Technol. (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, and Z. Liu, “Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions,” J. Am. Chem. Soc. 135, 10926–10929 (2013).
[Crossref]

Nano Lett. (9)

S. F. Shi, X. Xu, D. C. Ralph, and P. L. McEuen, “Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors,” Nano Lett. 11, 1814–1818 (2011).
[Crossref]

M. Badioli, A. Woessner, K.-J. Tielrooij, S. Nanot, G. Navickaite, T. Stauber, F. J. Garcia de Abajo, and F. H. L. Koppens, “Phonon-mediated mid-infrared photoresponse of graphene,” Nano Lett. 14, 6374–6381 (2014).
[Crossref]

Z. Fang, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14, 214–219 (2014).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T.-L. Ren, and Z. Bao, “Large-area, transparent and flexible infrared photodetector fabricated using P-N junctions formed by N-doping CVD-grown graphene,” Nano Lett. 14, 3702–3708 (2014).
[Crossref]

Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H.-S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, “Second-harmonic generation from sub-5  nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates,” Nano Lett. 15, 5976–5981 (2015).
[Crossref]

R. Rivelino and F. de Brito Mota, “Band gap and density of states of the hydrated C60 fullerene system at finite temperature,” Nano Lett. 7, 1526–1531 (2007).
[Crossref]

S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determination of work function of graphene under a metal electrode and its role in contact resistance,” Nano Lett. 12, 3887–3892 (2012).
[Crossref]

Nat. Commun. (7)

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
[Crossref]

K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, “Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation,” Nat. Commun. 3, 1280 (2012).
[Crossref]

C. O. Kim, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S.-H. Choi, and E. Hwang, “High photoresponsivity in an all-graphene p-n vertical junction photodetector,” Nat. Commun. 5, 3429 (2014).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Lohneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
[Crossref]

Nat. Nanotechnol. (1)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Nat. Nanotechol. (1)

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechol. 7, 363–368 (2012).
[Crossref]

Optica (2)

Phys. Rev. B (1)

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B 85, 115438 (2012).
[Crossref]

Phys. Rev. Lett. (2)

F. Sols, F. Guinea, and A. H. C. Neto, “Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Sci. Rep. (1)

X. Yu, Y. Shen, T. Liu, T. Wu, and Q. Wang, “Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation,” Sci. Rep. 5, 12014 (2015).
[Crossref]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (633 KB)      supplementary information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Fabrication design, device architectures, and the photodetection mechanism. (a) SEM image of the HSQ resist mask prior to the oxygen plasma RIE process. The scale bar is 100 nm. (b) Experimental setup for vapor phase deposition of C60 on top of GNR FET. T represents the temperature. The C60 powder is heated to 700°C, while the GNR device is kept away from the center with a temperature 500°C. (c) Schematic design of the hybrid GNR-C60 nanostructure. (d) Illustration on the bandgap structure of GNR-C60 hybrid nanostructures showing the photoexcited charge transfer and electron trapping processes. After the photoexcitation process, the generated electrons will be trapped inside the C60 film layer while the holes will be circulated within the GNR channel. Eg and Ef represent the bandgap and Fermi level of GNR.
Fig. 2.
Fig. 2. (a) Raman spectroscopy of graphene, graphene nanoribbon, and GNR-C60 hybrid nanostructure. D band (1350cm1) and G band (1580cm1) of graphene and Ag(2) (1465cm1) band of C60 film Raman features are also identified. (b) 2D Raman peak (2700cm1) of GNR and GNR-C60 hybrid nanostructure.
Fig. 3.
Fig. 3. Electrical characterization results of GNR and hybrid GNR-C60 FETs at room temperature without light illumination. (a) Id-Vd curves of GNR and hybrid GNR-C60 FETs recorded at Vg=0V. (b) Id-Vg curves of GNR and hybrid GNR-C60 FETs recorded at Vd=10mV.
Fig. 4.
Fig. 4. Optoelectronic properties of GNR-C60 hybrid phototransistor with laser wavelength of 10 μm. (a) Time-resolved photocurrent of GNR-C60 hybrid phototransistor and bare GNR phototransistor. (b) Gate voltage dependence of photocurrent generation of GNR-C60 hybrid phototransistor with 6 nm C60 film. (c) Dependence of photocurrent in GNR-C60 hybrid phototransistor with respect to different thickness of C60 films. The power intensity of the measurements in (a), (b) and (c) is kept as a constant of 2.5Wcm2. (d) Laser power dependence of photocurrent generation in GNR-C60 hybrid phototransistor with 6 nm C60 film.

Metrics