Abstract

Modal interference can lead to intensity modulations in optical fibers, which can produce refractive index gratings under the influence of quantum defect heating in a fiber laser. These gratings are perfectly phased matched for mode couplings, which can lead to transverse mode instabilities at high average powers in fiber lasers. A detailed understanding of this process is critical for further power scaling of fiber lasers. We have directly observed and characterized this quantum-defect-assisted mode coupling for the first time using polarization modes in a PM fiber amplifier, providing solid experimental evidence for this key mechanism for transverse mode instability in fiber lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated thermal Rayleigh scattering in optical fibers

Liang Dong
Opt. Express 21(3) 2642-2656 (2013)

Brillouin scattering spectra in high-power singlefrequency ytterbium doped fiber amplifiers

Matthias Hildebrandt, Sebastian Büsche, Peter Weßels, Maik Frede, and Dietmar Kracht
Opt. Express 16(20) 15970-15979 (2008)

A theoretical treatment of two approaches to SBS mitigation with two-tone amplification

Iyad Dajani, Clint Zeringue, T. Justin Bronder, Thomas Shay, Athanasios Gavrielides, and Craig Robin
Opt. Express 16(18) 14233-14247 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Smith and J. J. Smith, Opt. Express 19, 10180 (2011).
    [Crossref]
  2. B. Ward, C. Robin, and I. Dajani, Opt. Express 20, 11407 (2012).
    [Crossref]
  3. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaad, Opt. Lett. 37, 2382 (2012).
    [Crossref]
  4. L. Dong, Opt. Express 21, 2642 (2013).
    [Crossref]
  5. T. Eidam, S. Hanf, E. Seise, T. V. Anderson, T. Gabler, C. Wirth, T. Schreiber, J. Lmpert, and A. Tünnermann, Opt. Lett. 35, 94 (2010).
    [Crossref]
  6. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 689 (2011).
    [Crossref]
  7. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Express 19, 13218 (2011).
    [Crossref]
  8. B. Pulford, T. Ehrenreich, R. Holten, F. Kong, T. W. Hawkins, L. Dong, and I. Dajani, Opt. Lett. 40, 2297 (2015).
    [Crossref]
  9. C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967).
    [Crossref]
  10. R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
    [Crossref]
  11. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
    [Crossref]
  12. I. L. Fabelinskii and V. S. Starunov, Appl. Opt. 6, 1793 (1967).
    [Crossref]
  13. C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
    [Crossref]
  14. W. Rother, D. Pohl, and W. Kaiser, Phys. Rev. Lett. 22, 915 (1969).
    [Crossref]
  15. N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, Phys. Rev. A 3, 404 (1971).
    [Crossref]
  16. L. M. Peterson and T. A. Wiggins, J. Opt. Soc. Am. 63, 13 (1973).
    [Crossref]
  17. R. C. Desai, M. D. Levenson, and J. A. Barker, Phys. Rev. A 27, 1968 (1983).
    [Crossref]
  18. H. J. Hoffman, IEEE J. Quantum Electron. 22, 552 (1986).
    [Crossref]
  19. H. J. Hoffman, J. Opt. Soc. Am. B 3, 253 (1986).
    [Crossref]
  20. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).
  21. P. Weßels and C. Fallnich, Opt. Express 11, 530 (2003).
    [Crossref]
  22. R. H. Stolen, A. Ashkin, W. Pleibel, and J. M. Dziedzic, Opt. Lett. 9, 300 (1984).
    [Crossref]
  23. M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
    [Crossref]
  24. R. H. Stolen, J. Lightwave Technol. 1, 297 (1983).
    [Crossref]
  25. A. Galtarossa and C. G. Someda, J. Lightwave Technol. 3, 1332 (1985).
    [Crossref]
  26. C. Vassalo, J. Lightwave Technol. 5, 24 (1987).
    [Crossref]
  27. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, J. Lightwave Technol. 16, 1013 (1998).
    [Crossref]

2015 (1)

2013 (1)

2012 (2)

2011 (3)

2010 (1)

2003 (1)

1998 (1)

1987 (1)

C. Vassalo, J. Lightwave Technol. 5, 24 (1987).
[Crossref]

1986 (2)

H. J. Hoffman, IEEE J. Quantum Electron. 22, 552 (1986).
[Crossref]

H. J. Hoffman, J. Opt. Soc. Am. B 3, 253 (1986).
[Crossref]

1985 (1)

A. Galtarossa and C. G. Someda, J. Lightwave Technol. 3, 1332 (1985).
[Crossref]

1984 (2)

R. H. Stolen, A. Ashkin, W. Pleibel, and J. M. Dziedzic, Opt. Lett. 9, 300 (1984).
[Crossref]

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

1983 (2)

R. H. Stolen, J. Lightwave Technol. 1, 297 (1983).
[Crossref]

R. C. Desai, M. D. Levenson, and J. A. Barker, Phys. Rev. A 27, 1968 (1983).
[Crossref]

1973 (1)

1971 (1)

N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, Phys. Rev. A 3, 404 (1971).
[Crossref]

1969 (1)

W. Rother, D. Pohl, and W. Kaiser, Phys. Rev. Lett. 22, 915 (1969).
[Crossref]

1968 (1)

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[Crossref]

1967 (4)

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967).
[Crossref]

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[Crossref]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[Crossref]

I. L. Fabelinskii and V. S. Starunov, Appl. Opt. 6, 1793 (1967).
[Crossref]

Alkeskjold, T. T.

Anderson, T. V.

Ashkin, A.

Barker, J. A.

R. C. Desai, M. D. Levenson, and J. A. Barker, Phys. Rev. A 27, 1968 (1983).
[Crossref]

Bloembergen, N.

N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, Phys. Rev. A 3, 404 (1971).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Broeng, J.

Cho, C. W.

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[Crossref]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967).
[Crossref]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[Crossref]

Dajani, I.

Davis, M. K.

Desai, R. C.

R. C. Desai, M. D. Levenson, and J. A. Barker, Phys. Rev. A 27, 1968 (1983).
[Crossref]

Digonnet, M. J. F.

Dong, L.

Dziedzic, J. M.

Ehrenreich, T.

Eidam, T.

Fabelinskii, I. L.

Fallnich, C.

Foltz, N. D.

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[Crossref]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[Crossref]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967).
[Crossref]

Gabler, T.

Galtarossa, A.

A. Galtarossa and C. G. Someda, J. Lightwave Technol. 3, 1332 (1985).
[Crossref]

Gray, M. A.

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[Crossref]

Hanf, S.

Hansen, K. R.

Hawkins, T. W.

Herman, R. M.

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[Crossref]

Hoffman, H. J.

H. J. Hoffman, J. Opt. Soc. Am. B 3, 253 (1986).
[Crossref]

H. J. Hoffman, IEEE J. Quantum Electron. 22, 552 (1986).
[Crossref]

Holten, R.

Jansen, F.

Jauregui, C.

Kaiser, W.

W. Rother, D. Pohl, and W. Kaiser, Phys. Rev. Lett. 22, 915 (1969).
[Crossref]

Kong, F.

Lægsgaad, J.

Levenson, M. D.

R. C. Desai, M. D. Levenson, and J. A. Barker, Phys. Rev. A 27, 1968 (1983).
[Crossref]

Limpert, J.

Lmpert, J.

Love, J. D.

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

Lowdermilk, W. H.

N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, Phys. Rev. A 3, 404 (1971).
[Crossref]

Matsuoka, M.

N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, Phys. Rev. A 3, 404 (1971).
[Crossref]

Otto, H. J.

Pantell, R. H.

Payne, D. N.

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

Peterson, L. M.

Pleibel, W.

Pohl, D.

W. Rother, D. Pohl, and W. Kaiser, Phys. Rev. Lett. 22, 915 (1969).
[Crossref]

Pulford, B.

Rank, D. H.

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[Crossref]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[Crossref]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967).
[Crossref]

Robin, C.

Rother, W.

W. Rother, D. Pohl, and W. Kaiser, Phys. Rev. Lett. 22, 915 (1969).
[Crossref]

Schmidt, O.

Schreiber, T.

Seise, E.

Smith, A. V.

Smith, J. J.

Someda, C. G.

A. Galtarossa and C. G. Someda, J. Lightwave Technol. 3, 1332 (1985).
[Crossref]

Starunov, V. S.

Steinmetz, A.

Stolen, R. H.

Stutzki, F.

Tünnermann, A.

Varnham, M. P.

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

Vassalo, C.

C. Vassalo, J. Lightwave Technol. 5, 24 (1987).
[Crossref]

Ward, B.

Weßels, P.

Wiggins, T. A.

L. M. Peterson and T. A. Wiggins, J. Opt. Soc. Am. 63, 13 (1973).
[Crossref]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[Crossref]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967).
[Crossref]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[Crossref]

Wirth, C.

Wong, C. S.

N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, Phys. Rev. A 3, 404 (1971).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

IEEE J. Quantum Electron. (1)

H. J. Hoffman, IEEE J. Quantum Electron. 22, 552 (1986).
[Crossref]

J. Lightwave Technol. (4)

R. H. Stolen, J. Lightwave Technol. 1, 297 (1983).
[Crossref]

A. Galtarossa and C. G. Someda, J. Lightwave Technol. 3, 1332 (1985).
[Crossref]

C. Vassalo, J. Lightwave Technol. 5, 24 (1987).
[Crossref]

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, J. Lightwave Technol. 16, 1013 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. (1)

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[Crossref]

Phys. Rev. A (2)

R. C. Desai, M. D. Levenson, and J. A. Barker, Phys. Rev. A 27, 1968 (1983).
[Crossref]

N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, Phys. Rev. A 3, 404 (1971).
[Crossref]

Phys. Rev. Lett. (4)

W. Rother, D. Pohl, and W. Kaiser, Phys. Rev. Lett. 22, 915 (1969).
[Crossref]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967).
[Crossref]

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[Crossref]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[Crossref]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup.
Fig. 2.
Fig. 2. (a) Relative probe gain and (b) relative seed gain for both seed and probe power of 19 mW. (c) Simulated probe STRS gain coefficient for the PM fiber used in the experiment.
Fig. 3.
Fig. 3. Peak STRS gain and loss versus seed output powers.
Fig. 4.
Fig. 4. Output powers (a) and STRS gain and loss (b) for seed power of 19 mW and probe power of 9.5 mW at the amplifier input. The pump power is 3.8 W.
Fig. 5.
Fig. 5. Output powers (a) and STRS gain and loss (b) for seed power of 9.5 mW and probe power of 19 mW at the amplifier input. The pump power is 3.8 W.
Fig. 6.
Fig. 6. STRS gain and loss for (a) seed power of 19.6 mW and probe power of 1.9 mW and (b) seed power of 2 mW and probe power of 20 mW at the amplifier input. The pump power in both cases is 3 W.
Fig. 7.
Fig. 7. (a) Power evolution after the seed input was turned off (seed input power was 50 mW; probe input and output powers were 1.13 and 2.33 W, respectively, and pump power was 3.5 W), and (b)  Δ P right after the turning off versus the relative phase of the two modes just before the turning off and a sinusoidal fit.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P 1 N ( z ) z = g 1 χ e g 2 z P 1 N ( z ) P 2 N ( z ) ,
P 2 N ( z ) z = g 1 χ e g 1 z P 1 N ( z ) P 2 N ( z ) ,
P 1 N ( z ) = P 1 ( z ) e g 1 z ,
P 2 N ( z ) = P 2 ( z ) e g 2 z .
P 2 ( z ) = P 2 ( 0 ) e g 2 L e g 1 χ 0 L P 1 ( z ) d z .
P 2 ( z ) = P 2 ( 0 ) e g 2 L e χ P 1 ( L ) .

Metrics