Abstract

We designed a high-resolution compact spectrometer based on an evanescently coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern, which is used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral results in a non-resonant broadband enhancement of the spectral resolution. Experimentally, we demonstrated a resolution of 0.01 nm at a wavelength of 1520 nm using a 250 μm radius spiral structure. Spectra containing 40 independent spectral channels are recovered simultaneously, and the operation bandwidth is significantly increased by applying compressive sensing to sparse spectra reconstruction. The ability to achieve such high resolution with low loss in a compact footprint is expected to have a significant impact on low-cost portable sensing and to add functionality to lab-on-a-chip systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband multimode fiber spectrometer

Seng Fatt Liew, Brandon Redding, Michael A. Choma, Hemant D. Tagare, and Hui Cao
Opt. Lett. 41(9) 2029-2032 (2016)

All-fiber spectrometer based on speckle pattern reconstruction

Brandon Redding, Sebastien M. Popoff, and Hui Cao
Opt. Express 21(5) 6584-6600 (2013)

High-resolution and broadband all-fiber spectrometers

Brandon Redding, Mansoor Alam, Martin Seifert, and Hui Cao
Optica 1(3) 175-180 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
    [Crossref]
  2. J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” J. Lightwave Technol. 16, 631–638 (1998).
    [Crossref]
  3. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  4. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
    [Crossref]
  5. Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express 21, 7793–7798 (2013).
    [Crossref]
  6. J. Zou, T. Lang, Z. Le, and J.-J. He, “Ultracompact silicon-on-insulator-based reflective arrayed waveguide gratings for spectroscopic applications,” Appl. Opt. 55, 3531–3536 (2016).
    [Crossref]
  7. S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
    [Crossref]
  8. C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
    [Crossref]
  9. G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
    [Crossref]
  10. B. Momeni, E. S. Hosseini, and A. Adibi, “Planar photonic crystal microspectrometers in silicon-nitride for the visible range,” Opt. Express 17, 17060–17069 (2009).
    [Crossref]
  11. B. Gao, Z. Shi, and R. W. Boyd, “Design of flat-band superprism structures for on-chip spectroscopy,” Opt. Express 23, 6491–6496 (2015).
    [Crossref]
  12. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [Crossref]
  13. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
    [Crossref]
  14. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced micro-spectrometer,” Opt. Express 18, 102–107 (2010).
    [Crossref]
  15. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
    [Crossref]
  16. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001).
    [Crossref]
  17. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
    [Crossref]
  18. A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
    [Crossref]
  19. Z. Xu, Z. Wang, M. Sullivan, D. Brady, S. Foulger, and A. Adibi, “Multimodal multiplex spectroscopy using photonic crystals,” Opt. Express 11, 2126–2133 (2003).
    [Crossref]
  20. T. W. Kohlgraf-Owens and A. Dogariu, “Transmission matrices of random media: means for spectral polarimetric measurements,” Opt. Lett. 35, 2236–2238 (2010).
    [Crossref]
  21. Q. Hang, B. Ung, I. Syed, N. Guo, and M. Skorobogatiy, “Photonic bandgap fiber bundle spectrometer,” Appl. Opt. 49, 4791–4800 (2010).
    [Crossref]
  22. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  23. P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
    [Crossref]
  24. M. Mazilu, T. Vettenburg, A. Di Falco, and K. Dholakia, “Random super-prism wavelength meter,” Opt. Lett. 39, 96–99 (2014).
    [Crossref]
  25. M. Chakrabarti, M. L. Jakobsen, and S. G. Hanson, “Speckle-based spectrometer,” Opt. Lett. 40, 3264–3267 (2015).
    [Crossref]
  26. N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
    [Crossref]
  27. T. Yang, C. Xu, H. Ho, Y. Zhu, X. Hong, Q. Wang, Y. Chen, X. Li, X. Zhou, M. Yi, and W. Huang, “Miniature spectrometer based on diffraction in a dispersive hole array,” Opt. Lett. 40, 3217–3220 (2015).
    [Crossref]
  28. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
    [Crossref]
  29. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37, 3384–3386 (2012).
    [Crossref]
  30. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
    [Crossref]
  31. B. Redding, S. M. Popoff, Y. Bromberg, M. A. Choma, and H. Cao, “Noise analysis of spectrometers based on speckle pattern reconstruction,” Appl. Opt. 53, 410–417 (2014).
    [Crossref]
  32. B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1, 175–180 (2014).
    [Crossref]
  33. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, P. Cheben, J. Lapointe, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
    [Crossref]
  34. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
    [Crossref]
  35. D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18, 1937–1945 (2010).
    [Crossref]
  36. W. Guo and M. Digonnet, “Compact coupled resonators for slow-light sensor applications,” Proc. SPIE 8636, 863604 (2013).
    [Crossref]
  37. W. Guo and M. J. F. Digonnet, “Coupled spiral interferometers,” J. Lightwave Technol. 32, 4162–4168 (2014).
    [Crossref]
  38. W. Guo and M. J. F. Digonnet, “Coupled spiral interferometer gyroscope,” J. Lightwave Technol. 32, 4360–4364 (2014).
    [Crossref]
  39. T. Chen, H. Lee, J. Li, and K. J. Vahala, “A general design algorithm for low optical loss adiabatic connections in waveguides,” Opt. Express 20, 22819 (2012).
    [Crossref]
  40. T. Chen, H. Lee, and K. J. Vahala, “Design and characterization of whispering-gallery spiral waveguides,” Opt. Express 22, 5196–5208 (2014).
    [Crossref]
  41. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
    [Crossref]
  42. D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
    [Crossref]
  43. H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
    [Crossref]
  44. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
    [Crossref]
  45. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  46. H. Stark and J. W. Woods, eds., Probability, Random Processes, and Estimation Theory for Engineers (Prentice-Hall, 1986).
  47. R. G. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral Approach (Springer-Verlag, 1991).
  48. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
    [Crossref]
  49. Z. Wang and Z. Yu, “Spectral analysis based on compressive sensing in nanophotonic structures,” Opt. Express 22, 25608–25614 (2014).
    [Crossref]
  50. S. Becker, J. Bobin, E. J. Candes, and E. Candès, “NESTA: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).
    [Crossref]
  51. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning (Springer, 2001).
  52. S. F. Liew, B. Redding, M. A. Choma, H. D. Tagare, and H. Cao, “Broadband multimode fiber spectrometer,” Opt. Lett. 41, 2029–2032 (2016).
    [Crossref]
  53. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref]
  54. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]

2016 (3)

2015 (5)

2014 (10)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref]

M. Mazilu, T. Vettenburg, A. Di Falco, and K. Dholakia, “Random super-prism wavelength meter,” Opt. Lett. 39, 96–99 (2014).
[Crossref]

B. Redding, S. M. Popoff, Y. Bromberg, M. A. Choma, and H. Cao, “Noise analysis of spectrometers based on speckle pattern reconstruction,” Appl. Opt. 53, 410–417 (2014).
[Crossref]

B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1, 175–180 (2014).
[Crossref]

T. Chen, H. Lee, and K. J. Vahala, “Design and characterization of whispering-gallery spiral waveguides,” Opt. Express 22, 5196–5208 (2014).
[Crossref]

Z. Wang and Z. Yu, “Spectral analysis based on compressive sensing in nanophotonic structures,” Opt. Express 22, 25608–25614 (2014).
[Crossref]

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometers,” J. Lightwave Technol. 32, 4162–4168 (2014).
[Crossref]

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometer gyroscope,” J. Lightwave Technol. 32, 4360–4364 (2014).
[Crossref]

D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
[Crossref]

2013 (7)

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref]

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

W. Guo and M. Digonnet, “Compact coupled resonators for slow-light sensor applications,” Proc. SPIE 8636, 863604 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
[Crossref]

Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express 21, 7793–7798 (2013).
[Crossref]

2012 (5)

2011 (2)

2010 (5)

2009 (2)

B. Momeni, E. S. Hosseini, and A. Adibi, “Planar photonic crystal microspectrometers in silicon-nitride for the visible range,” Opt. Express 17, 17060–17069 (2009).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

2008 (4)

2007 (1)

2004 (2)

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref]

2003 (1)

2001 (1)

1998 (2)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” J. Lightwave Technol. 16, 631–638 (1998).
[Crossref]

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Adibi, A.

Alam, M.

Babin, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Balakrishnan, A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Becker, S.

S. Becker, J. Bobin, E. J. Candes, and E. Candès, “NESTA: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).
[Crossref]

Bobin, J.

S. Becker, J. Bobin, E. J. Candes, and E. Candès, “NESTA: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).
[Crossref]

Bock, P. J.

Boyd, R. W.

Brady, D.

Bromberg, Y.

Bugrov, A.

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Cabrini, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Calafiore, G.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

Calo, C.

Calvo, M. L.

Candes, E. J.

S. Becker, J. Bobin, E. J. Candes, and E. Candès, “NESTA: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).
[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Candès, E.

S. Becker, J. Bobin, E. J. Candes, and E. Candès, “NESTA: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).
[Crossref]

Cao, H.

Chakrabarti, M.

Chamanzar, M.

Charbonneau, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Cheben, P.

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
[Crossref]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18, 1937–1945 (2010).
[Crossref]

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, P. Cheben, J. Lapointe, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref]

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
[Crossref]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Chen, E. H.

N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
[Crossref]

Chen, L.

Chen, T.

T. Chen, H. Lee, and K. J. Vahala, “Design and characterization of whispering-gallery spiral waveguides,” Opt. Express 22, 5196–5208 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

T. Chen, H. Lee, J. Li, and K. J. Vahala, “A general design algorithm for low optical loss adiabatic connections in waveguides,” Opt. Express 20, 22819 (2012).
[Crossref]

Chen, Y.

Choma, M. A.

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Cloutier, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Davies, M.

Delage, A.

Delâge, A.

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
[Crossref]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18, 1937–1945 (2010).
[Crossref]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, P. Cheben, J. Lapointe, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref]

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref]

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
[Crossref]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Densmore, A.

Dholakia, K.

Dhuey, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Di Falco, A.

Diddams, S. A.

D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref]

Digonnet, M.

W. Guo and M. Digonnet, “Compact coupled resonators for slow-light sensor applications,” Proc. SPIE 8636, 863604 (2013).
[Crossref]

Digonnet, M. J. F.

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometers,” J. Lightwave Technol. 32, 4162–4168 (2014).
[Crossref]

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometer gyroscope,” J. Lightwave Technol. 32, 4360–4364 (2014).
[Crossref]

Dogariu, A.

Dossou, K.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Eftekhar, A. A.

Englund, D.

N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
[Crossref]

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Erickson, L.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” J. Lightwave Technol. 16, 631–638 (1998).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Florjanczyk, M.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Foulger, S.

Friedman, J.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning (Springer, 2001).

Gan, X.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Gao, B.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

B. Gao, Z. Shi, and R. W. Boyd, “Design of flat-band superprism structures for on-chip spectroscopy,” Opt. Express 23, 6491–6496 (2015).
[Crossref]

Gao, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Ghanem, R. G.

R. G. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral Approach (Springer-Verlag, 1991).

Goltsov, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Guo, N.

Guo, W.

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometers,” J. Lightwave Technol. 32, 4162–4168 (2014).
[Crossref]

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometer gyroscope,” J. Lightwave Technol. 32, 4360–4364 (2014).
[Crossref]

W. Guo and M. Digonnet, “Compact coupled resonators for slow-light sensor applications,” Proc. SPIE 8636, 863604 (2013).
[Crossref]

Hang, Q.

Hanson, S. G.

Hastie, T.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning (Springer, 2001).

Hatami, F.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

He, J.

He, J.-J.

Ho, H.

Hong, X.

Hosseini, E. S.

Huang, W.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Ivonin, I.

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Jakobsen, M. L.

Janz, S.

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
[Crossref]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18, 1937–1945 (2010).
[Crossref]

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, P. Cheben, J. Lapointe, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref]

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
[Crossref]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Kley, E.-B.

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Kohlgraf-Owens, T. W.

Koshelev, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

Koteles, E. S.

Krug, P. A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Kymissis, I.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Kyotoku, B. B. C.

Lamontagne, B.

Lang, T.

Lapointe, J.

Le, Z.

Lee, H.

Li, J.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

T. Chen, H. Lee, J. Li, and K. J. Vahala, “A general design algorithm for low optical loss adiabatic connections in waveguides,” Opt. Express 20, 22819 (2012).
[Crossref]

Li, Q.

Li, X.

Liapis, A. C.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

Liew, S. F.

S. F. Liew, B. Redding, M. A. Choma, H. D. Tagare, and H. Cao, “Broadband multimode fiber spectrometer,” Opt. Lett. 41, 2029–2032 (2016).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Lipson, M.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Lopinski, G.

Ma, R.

Mazilu, M.

McKinnon, R.

McNab, S. J.

Meng, F.

N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
[Crossref]

Menon, R.

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Mischki, T.

Momeni, B.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Nitkowski, A.

Oh, D. Y.

Packirisamy, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Pearson, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Peroz, C.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Pervez, N.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Popoff, S. M.

Post, E.

Prather, D. W.

Redding, B.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Sasorov, P.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

Schmid, J. H.

Schmidt, H.

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Schröder, T.

N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
[Crossref]

Seifert, M.

Sell, D.

Sharkawy, A.

Shi, S.

Shi, Z.

Shiue, R.-J.

N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
[Crossref]

Siddiqui, M. R.

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

Skorobogatiy, M.

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Soltani, M.

Spanos, P.

R. G. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral Approach (Springer-Verlag, 1991).

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Suh, M.-G.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref]

Sullivan, M.

Syed, I.

Tagare, H. D.

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Tibshirani, R.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning (Springer, 2001).

Ung, B.

Vachon, M.

Vahala, K. J.

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Velasco, A. V.

Vettenburg, T.

Vlasov, Y. A.

Wakin, M. B.

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Waldron, P.

Wan, N. H.

N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
[Crossref]

Wang, P.

Wang, Q.

Wang, Z.

Xia, Z.

Xu, C.

Xu, D.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

Xu, D. X.

Xu, D.-X.

Xu, Z.

Yang, K. Y.

Yang, T.

Yankov, V.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

Yegnanarayanan, S.

Yi, M.

Yu, Z.

Zhou, X.

Zhu, Y.

Zou, J.

Appl. Opt. (4)

Appl. Phys. Lett. (3)

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

A. C. Liapis, B. Gao, M. R. Siddiqui, Z. Shi, and R. W. Boyd, “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities,” Appl. Phys. Lett. 108, 021105 (2016).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 41105 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

IEEE Signal Process. Mag. (1)

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

J. Lightwave Technol. (3)

J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” J. Lightwave Technol. 16, 631–638 (1998).
[Crossref]

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometers,” J. Lightwave Technol. 32, 4162–4168 (2014).
[Crossref]

W. Guo and M. J. F. Digonnet, “Coupled spiral interferometer gyroscope,” J. Lightwave Technol. 32, 4360–4364 (2014).
[Crossref]

Light Sci. Appl. (1)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

Nat. Commun. (3)

N. H. Wan, F. Meng, T. Schröder, R.-J. Shiue, E. H. Chen, and D. Englund, “High-resolution optical spectroscopy using multimode interference in a compact tapered fibre,” Nat. Commun. 6, 7762 (2015).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref]

Nat. Photonics (3)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Opt. Express (16)

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref]

T. Chen, H. Lee, J. Li, and K. J. Vahala, “A general design algorithm for low optical loss adiabatic connections in waveguides,” Opt. Express 20, 22819 (2012).
[Crossref]

T. Chen, H. Lee, and K. J. Vahala, “Design and characterization of whispering-gallery spiral waveguides,” Opt. Express 22, 5196–5208 (2014).
[Crossref]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21, 6584–6600 (2013).
[Crossref]

B. Momeni, E. S. Hosseini, and A. Adibi, “Planar photonic crystal microspectrometers in silicon-nitride for the visible range,” Opt. Express 17, 17060–17069 (2009).
[Crossref]

B. Gao, Z. Shi, and R. W. Boyd, “Design of flat-band superprism structures for on-chip spectroscopy,” Opt. Express 23, 6491–6496 (2015).
[Crossref]

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
[Crossref]

Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express 21, 7793–7798 (2013).
[Crossref]

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
[Crossref]

B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced micro-spectrometer,” Opt. Express 18, 102–107 (2010).
[Crossref]

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref]

Z. Xu, Z. Wang, M. Sullivan, D. Brady, S. Foulger, and A. Adibi, “Multimodal multiplex spectroscopy using photonic crystals,” Opt. Express 11, 2126–2133 (2003).
[Crossref]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref]

Z. Wang and Z. Yu, “Spectral analysis based on compressive sensing in nanophotonic structures,” Opt. Express 22, 25608–25614 (2014).
[Crossref]

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref]

D.-X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18, 1937–1945 (2010).
[Crossref]

Opt. Lett. (10)

D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014).
[Crossref]

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
[Crossref]

S. F. Liew, B. Redding, M. A. Choma, H. D. Tagare, and H. Cao, “Broadband multimode fiber spectrometer,” Opt. Lett. 41, 2029–2032 (2016).
[Crossref]

T. W. Kohlgraf-Owens and A. Dogariu, “Transmission matrices of random media: means for spectral polarimetric measurements,” Opt. Lett. 35, 2236–2238 (2010).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, P. Cheben, J. Lapointe, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
[Crossref]

M. Mazilu, T. Vettenburg, A. Di Falco, and K. Dholakia, “Random super-prism wavelength meter,” Opt. Lett. 39, 96–99 (2014).
[Crossref]

M. Chakrabarti, M. L. Jakobsen, and S. G. Hanson, “Speckle-based spectrometer,” Opt. Lett. 40, 3264–3267 (2015).
[Crossref]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37, 3384–3386 (2012).
[Crossref]

T. Yang, C. Xu, H. Ho, Y. Zhu, X. Hong, Q. Wang, Y. Chen, X. Li, X. Zhou, M. Yi, and W. Huang, “Miniature spectrometer based on diffraction in a dispersive hole array,” Opt. Lett. 40, 3217–3220 (2015).
[Crossref]

Optica (1)

Proc. SPIE (1)

W. Guo and M. Digonnet, “Compact coupled resonators for slow-light sensor applications,” Proc. SPIE 8636, 863604 (2013).
[Crossref]

SIAM J. Imaging Sci. (1)

S. Becker, J. Bobin, E. J. Candes, and E. Candès, “NESTA: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).
[Crossref]

Other (3)

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning (Springer, 2001).

H. Stark and J. W. Woods, eds., Probability, Random Processes, and Estimation Theory for Engineers (Prentice-Hall, 1986).

R. G. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral Approach (Springer-Verlag, 1991).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2183 KB)      Simulation details

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Numerical modeling of the evanescently coupled multimode spiral spectrometer. (a) Schematic of a single Archimedean spiral (left) and two interleaved Archimedean spirals connected at the center by an “S-bend” waveguide (right). (b) Spectral-spatial transfer matrix for the interleaved spiral structure without evanescent coupling and mode mixing (i), with only evanescent coupling (ii), with only mode mixing (iii), with both mode mixing and evanescent coupling (iv). (c) Spectral correlation function C ( Δ λ ) for the 4 cases in (b). The spectral correlation width (HWHM of C ( Δ λ ) ) δ λ is 0.4 nm for (i), 0.3 nm for (ii), 0.9 nm for (iii), and 0.17 nm for (iv).

Fig. 2.
Fig. 2.

Spiral spectrometer in a silicon-on-insulator wafer. (a) Schematic of a spiral spectrometer with integrated detectors. (b) Top-view SEM image of the silicon spiral waveguide that is 10 μm wide and 18 mm long. (c), (d) Close-up SEM images showing the air gap between neighboring waveguide arms, and the gap width is 1 μm (c) or 50 nm (d).

Fig. 3.
Fig. 3.

Calibration and testing of the spiral spectrometer. (a) Top-view optical image of the tapered triangular region at the output port of the spiral waveguide (the boundary is marked by the white dashed line). (b) Measured spectral-spatial transfer matrix T for a spiral waveguide with a 50 nm coupling gap, each column represents the intensity distribution on the end facet of the tapered region at a specific wavelength I ( x , λ ) . (c) The spectral correlation function C ( Δ λ ) obtained from the measured I ( x , λ ) for three spirals with different gap width. The spectral correlation width δ λ [HWHM of C ( Δ λ ) ] is 0.07 nm for the 1 μm gap, 0.02 nm for the 100 nm gap, and 0.01 nm for the 50 nm gap. (d) A reconstructed spectrum (black solid line) consisting of the two lines separated by 0.01 nm. Vertical red dotted lines mark the center wavelengths of the two lines.

Fig. 4.
Fig. 4.

Operation bandwidth of the spiral spectrometer. (a) Semi-log plot of the eigenvalues of the spatial covariance matrix C ( x 1 , x 2 ) for the measured speckle pattern I ( x , λ ) , ordered by magnitude. The kink, indicated by the arrow, gives the number of orthogonal spatial modes, M = 40 , in the output speckle pattern. (b) Two recovered spectra with identical shape but their magnitude differs by a factor of 2. After doubling the magnitude of the lower spectrum (blue dotted line), the two spectra overlap, verifying the linearity of measured spectra. (c), (d) Reconstruction of a sparse spectrum that has 8 (c) or 4 (d) discrete lines of varying amplitude that are distributed over 166 (c) or 332 (d) spectral channels in a wavelength range of 1 nm (c) or 2 nm (d). (e), (f) Reconstruction of a continuous spectrum with 6 (e) or 3 (f) DCT components over a 1 nm (e) or 2 nm (f) bandwidth. (g) Recovered spectrum having two sharp lines of different amplitude on top of a broad peak. (h) Recovered spectrum containing a narrow dip on a smooth broadband background.

Metrics