Abstract

Multifocal lenses are increasingly used solutions for presbyopia, the age-related loss of crystalline lens focus ability. These lenses work by the principle of simultaneous vision, superimposing focused and defocused images on the retina. Providing the experience of simultaneous vision to a patient before permanent implantation of a multifocal lens is a recognized unmet need to increase the patient’s confidence and optimize the lens selection. We developed a hand-held, see-through multifocal vision simulator based on temporal multiplexing of a tunable lens. The device was calibrated and validated using focimetry and Hartmann–Shack aberrometry revealing high reproducibility of the through-focus multifocal energy distribution and high optical quality. We measured visual acuity and perceptual quality on nine cyclopeged patients with three monofocal, two bifocal, and two trifocal corrections with different far/intermediate/near energy distributions simulated using the device. Visual performance and perceptual quality with multifocal corrections varied across patients, although they were more uniform across distances than monofocal corrections. Among the bifocal and trifocal designs, a trifocal with more energy at far was the most frequently identified as providing better quality. The simultaneous vision simulator proved a promising compact tool to study visual performance with multifocal corrections and to select the lens design best suited for each patient, alternative to costly and bulky adaptive optics based devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perceived image quality with simulated segmented bifocal corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Pablo de Gracia, Lucie Sawides, and Susana Marcos
Biomed. Opt. Express 7(11) 4388-4399 (2016)

Temporal multiplexing with adaptive optics for simultaneous vision

Eleni Papadatou, Antonio J. Del Águila-Carrasco, Iván Marín-Franch, and Norberto López-Gil
Biomed. Opt. Express 7(10) 4102-4113 (2016)

Comparison of vision through surface modulated and spatial light modulated multifocal optics

Maria Vinas, Carlos Dorronsoro, Aiswaryah Radhakrishnan, Clara Benedi-Garcia, Edward Anthony LaVilla, Jim Schwiegerling, and Susana Marcos
Biomed. Opt. Express 8(4) 2055-2068 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16, 33–37 (2005).
  2. S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
    [Crossref]
  3. B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).
  4. M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
    [Crossref]
  5. A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
    [Crossref]
  6. M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with angular and radial multifocal phase patterns using adaptive optics,” Invest. Ophthalmol. Visual Sci. (to be published).
  7. C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).
  8. E. J. Fernandez, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
    [Crossref]
  9. C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
    [Crossref]
  10. L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
    [Crossref]
  11. L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
    [Crossref]
  12. L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
    [Crossref]
  13. P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
    [Crossref]
  14. C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with simulated segmented bifocal corrections,” Biomed. Opt. Express (to be published).
  15. A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refractive Surg. (to be published).
  16. A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9, e93089 (2014).
    [Crossref]
  17. C. Dorronsoro, J. R. Alonso, and S. Marcos, “Miniature simultaneous vision simulator instrument,” PatentWO2015049402 A1 (Apr.9, 2015).
  18. C. Dorronsoro and S. Marcos, “Miniaturized simultaneous vision simulator with mask generator,” Spanish patentP201531397 (Oct.30, 2015).
  19. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009).
    [Crossref]
  20. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
    [Crossref]
  21. J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Visual Sci. 55, 2599–2607 (2014).
    [Crossref]
  22. J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).
  23. W. H. Ehrenstein and A. Ehrenstein, Psychophysical Methods in Modern Techniques in Neuroscience Research (Springer, 1999).
  24. D. G. Pelli and B. Farell, Psychophysical Methods in Handbook of Optics (McGraw-Hill, 1995).
  25. R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: a Friendly Introduction for Electrical and Computer Engineers (Wiley, 2005).
  26. P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38, 3526–3529 (2013).
    [Crossref]
  27. C. Dorronsoro and S. Marcos, “Instrument for simulating multifocal ophthalmic corrections,” PatentPCT/ES2010/070218 (Apr.8, 2009).
  28. H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vis. Res. 48, 1804–1811 (2008).
    [Crossref]
  29. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
    [Crossref]
  30. J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

2014 (4)

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9, e93089 (2014).
[Crossref]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Visual Sci. 55, 2599–2607 (2014).
[Crossref]

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

2013 (2)

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38, 3526–3529 (2013).
[Crossref]

2012 (2)

A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
[Crossref]

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

2011 (5)

C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
[Crossref]

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
[Crossref]

2009 (2)

E. J. Fernandez, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[Crossref]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009).
[Crossref]

2008 (3)

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vis. Res. 48, 1804–1811 (2008).
[Crossref]

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

2005 (1)

R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16, 33–37 (2005).

2002 (1)

1997 (1)

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).

Aldaba, M.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

Alonso, J. R.

C. Dorronsoro, J. R. Alonso, and S. Marcos, “Miniature simultaneous vision simulator instrument,” PatentWO2015049402 A1 (Apr.9, 2015).

Arasa, J.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

Artal, P.

Atchison, D. A.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vis. Res. 48, 1804–1811 (2008).
[Crossref]

Bellucci, R.

R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16, 33–37 (2005).

Berdeaux, G.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).

Birkenfeld, J.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Visual Sci. 55, 2599–2607 (2014).
[Crossref]

Birt, B. J.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vis. Res. 48, 1804–1811 (2008).
[Crossref]

Canovas, C.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

Casuccio, A.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Cervino, A.

A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
[Crossref]

Cillino, G.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Cillino, S.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Cochener, B.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).

Cortes, D.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with angular and radial multifocal phase patterns using adaptive optics,” Invest. Ophthalmol. Visual Sci. (to be published).

Courouve, L.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).

de Castro, A.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Visual Sci. 55, 2599–2607 (2014).
[Crossref]

de Gracia, P.

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38, 3526–3529 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
[Crossref]

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with simulated segmented bifocal corrections,” Biomed. Opt. Express (to be published).

Di Pace, F.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Dorronsoro, C.

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9, e93089 (2014).
[Crossref]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38, 3526–3529 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
[Crossref]

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

C. Dorronsoro, J. R. Alonso, and S. Marcos, “Miniature simultaneous vision simulator instrument,” PatentWO2015049402 A1 (Apr.9, 2015).

C. Dorronsoro and S. Marcos, “Miniaturized simultaneous vision simulator with mask generator,” Spanish patentP201531397 (Oct.30, 2015).

C. Dorronsoro and S. Marcos, “Instrument for simulating multifocal ophthalmic corrections,” PatentPCT/ES2010/070218 (Apr.8, 2009).

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with simulated segmented bifocal corrections,” Biomed. Opt. Express (to be published).

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refractive Surg. (to be published).

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with angular and radial multifocal phase patterns using adaptive optics,” Invest. Ophthalmol. Visual Sci. (to be published).

Ehrenstein, A.

W. H. Ehrenstein and A. Ehrenstein, Psychophysical Methods in Modern Techniques in Neuroscience Research (Springer, 1999).

Ehrenstein, W. H.

W. H. Ehrenstein and A. Ehrenstein, Psychophysical Methods in Modern Techniques in Neuroscience Research (Springer, 1999).

Farell, B.

D. G. Pelli and B. Farell, Psychophysical Methods in Handbook of Optics (McGraw-Hill, 1995).

Fernandez, E. J.

Ferrer-Blasco, T.

A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
[Crossref]

Gambra, E.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Garcia-Lazaro, S.

A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
[Crossref]

Giner, A.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

Gonzalez, V.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with angular and radial multifocal phase patterns using adaptive optics,” Invest. Ophthalmol. Visual Sci. (to be published).

Goodman, D. J.

R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: a Friendly Introduction for Electrical and Computer Engineers (Wiley, 2005).

Guo, H.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vis. Res. 48, 1804–1811 (2008).
[Crossref]

Holladay, J. T.

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).

Khoshnood, B.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).

Kim, M. J.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
[Crossref]

Lafuma, A.

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).

Llorente-Guillemot, A.

A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
[Crossref]

Lodato, G.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Luque, S.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

Macrae, S.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
[Crossref]

Manzanera, S.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

Marcos, S.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Visual Sci. 55, 2599–2607 (2014).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9, e93089 (2014).
[Crossref]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38, 3526–3529 (2013).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
[Crossref]

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

C. Dorronsoro and S. Marcos, “Miniaturized simultaneous vision simulator with mask generator,” Spanish patentP201531397 (Oct.30, 2015).

C. Dorronsoro, J. R. Alonso, and S. Marcos, “Miniature simultaneous vision simulator instrument,” PatentWO2015049402 A1 (Apr.9, 2015).

C. Dorronsoro and S. Marcos, “Instrument for simulating multifocal ophthalmic corrections,” PatentPCT/ES2010/070218 (Apr.8, 2009).

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refractive Surg. (to be published).

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with simulated segmented bifocal corrections,” Biomed. Opt. Express (to be published).

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with angular and radial multifocal phase patterns using adaptive optics,” Invest. Ophthalmol. Visual Sci. (to be published).

Morreale, R.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Pelli, D. G.

D. G. Pelli and B. Farell, Psychophysical Methods in Handbook of Optics (McGraw-Hill, 1995).

Perez-Cambrodi, R. J.

A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
[Crossref]

Piers, P. A.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

Pillitteri, F.

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Prieto, P.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

Prieto, P. M.

Pujol, J.

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

Radhakrishnan, A.

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9, e93089 (2014).
[Crossref]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refractive Surg. (to be published).

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with simulated segmented bifocal corrections,” Biomed. Opt. Express (to be published).

Sanchez-Gonzalez, A.

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
[Crossref]

Sawides, L.

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9, e93089 (2014).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
[Crossref]

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with simulated segmented bifocal corrections,” Biomed. Opt. Express (to be published).

Schwarz, C.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

C. Schwarz, P. M. Prieto, E. J. Fernandez, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
[Crossref]

Tchah, H.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
[Crossref]

Vinas, M.

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with angular and radial multifocal phase patterns using adaptive optics,” Invest. Ophthalmol. Visual Sci. (to be published).

Webster, M.

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref]

Webster, M. A.

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
[Crossref]

Weeber, H. A.

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

Williams, D. R.

Yates, R. D.

R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: a Friendly Introduction for Electrical and Computer Engineers (Wiley, 2005).

Yoon, G.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
[Crossref]

Yoon, G. Y.

Zheleznyak, L.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
[Crossref]

Clin. Exp. Optom. (1)

A. Llorente-Guillemot, S. Garcia-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cervino, “Visual performance with simultaneous vision multifocal contact lenses,” Clin. Exp. Optom. 95, 54–59 (2012).
[Crossref]

Clin. Ophthalmol. (1)

B. Cochener, A. Lafuma, B. Khoshnood, L. Courouve, and G. Berdeaux, “Comparison of outcomes with multifocal intraocular lenses: a meta-analysis,” Clin. Ophthalmol. 5, 45–56 (2011).

Curr. Opin. Ophthalmol. (1)

R. Bellucci, “Multifocal intraocular lenses,” Curr. Opin. Ophthalmol. 16, 33–37 (2005).

Invest. Ophthalmol. Visual Sci. (4)

C. Canovas, S. Manzanera, C. Schwarz, P. Prieto, H. A. Weeber, P. A. Piers, and P. Artal, “Binocular performance of IOL combinations studied with a visual simulator,” Invest. Ophthalmol. Visual Sci. 55, 4024 (2014).

P. de Gracia, C. Dorronsoro, A. Sanchez-Gonzalez, L. Sawides, and S. Marcos, “Experimental simulation of simultaneous vision,” Invest. Ophthalmol. Visual Sci. 54, 415–422 (2013).
[Crossref]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Visual Sci. 55, 2599–2607 (2014).
[Crossref]

J. Pujol, M. Aldaba, A. Giner, J. Arasa, and S. Luque, “Visual performance evaluation of new multifocal intraocular design before surgery,” Invest. Ophthalmol. Visual Sci. 55, 3752 (2014).

J. Cataract Refractive Surg. (1)

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refractive Surg. 37, 1305–1312 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13, 388–391 (1997).

J. Vis. (4)

L. Sawides, C. Dorronsoro, P. de Gracia, M. Vinas, M. Webster, and S. Marcos, “Dependence of subjective image focus on the magnitude and pattern of high order aberrations,” J. Vis. 12(8), 4 (2012).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Ophthalmology (1)

S. Cillino, A. Casuccio, F. Di Pace, R. Morreale, F. Pillitteri, G. Cillino, and G. Lodato, “One-year outcomes with new-generation multifocal intraocular lenses,” Ophthalmology 115, 1508–1516 (2008).
[Crossref]

Opt. Lett. (3)

PLoS One (2)

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9, e93089 (2014).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS One 6, e27031 (2011).
[Crossref]

Vis. Res. (1)

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vis. Res. 48, 1804–1811 (2008).
[Crossref]

Other (9)

C. Dorronsoro and S. Marcos, “Instrument for simulating multifocal ophthalmic corrections,” PatentPCT/ES2010/070218 (Apr.8, 2009).

W. H. Ehrenstein and A. Ehrenstein, Psychophysical Methods in Modern Techniques in Neuroscience Research (Springer, 1999).

D. G. Pelli and B. Farell, Psychophysical Methods in Handbook of Optics (McGraw-Hill, 1995).

R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: a Friendly Introduction for Electrical and Computer Engineers (Wiley, 2005).

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with simulated segmented bifocal corrections,” Biomed. Opt. Express (to be published).

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal IOL design,” J. Cataract Refractive Surg. (to be published).

C. Dorronsoro, J. R. Alonso, and S. Marcos, “Miniature simultaneous vision simulator instrument,” PatentWO2015049402 A1 (Apr.9, 2015).

C. Dorronsoro and S. Marcos, “Miniaturized simultaneous vision simulator with mask generator,” Spanish patentP201531397 (Oct.30, 2015).

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, and S. Marcos, “Testing vision with angular and radial multifocal phase patterns using adaptive optics,” Invest. Ophthalmol. Visual Sci. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A: Schematic of miniaturized simultaneous vision simulator. The image formed by the tunable lens (TL) is projected onto the eye using a pair of achromatic doublets of 75 mm EFL. M1, M2 are used to align the optical axis of the device with the line of sight of the eye. Mirrors M3–M6 act as a pair of Porro prisms for image re-erection. B: SimVis Mini prototype showing principal components. C: Subject viewing through SimVis Mini.

Fig. 2.
Fig. 2.

A: Visual acuity measurements using commercial software application displayed in a HD display. B: Perceptual preference measurements using visual scene with landscape for far and a high-contrast text for intermediate and near distances.

Fig. 3.
Fig. 3.

A: Voltage versus induced defocus. B: Measured lower- and higher-order aberrations (RMS in micrometers) with induced defocus. Solid symbols stand for horizontal aberrations, while empty symbols stand for vertical aberrations. C: Laser spots at the CMOS camera of the high-speed focimeter, corresponding to monofocal and multifocal corrections. Outer circle stand for far vision optical power. Inner circle stands for near vision optical power. See text for details.

Fig. 4.
Fig. 4.

A: logMAR visual acuity at far versus at near with different monofocal and multifocal corrections, averaged across nine subjects. Each color represents a different correction. The size of the bubble represents VA at intermediate distance. B: Range of visual acuity for far and near with different monofocal and multifocal corrections, averaged across nine subjects. Green squares represent visual acuity at intermediate distance.

Fig. 5.
Fig. 5.

Perceptual score at far and near distances. Bubble size indicates overall score. A: Average across subjects for all corrections. B: For monofocal corrections in all subjects. C: For simultaneous vision corrections in all subjects.

Fig. 6.
Fig. 6.

Preference maps for simultaneous vision corrections. Green dot indicates that the design indicated in the left label (horizontally oriented text) was preferred significantly over the one in the lower label (vertically oriented text), and a red dot indicates that the design indicated in the left label was significantly rejected compared to the one in the lower label. Gray dots indicate nonsignificant preferences.

Metrics