Abstract

Optical scanning holography enables the recording of three-dimensional (3D) objects involving scattering or fluorescence emission. However, the time-consuming raster scanning process prevents real-time tracking of dynamic events. We propose a compressed sensing approach to reduce the number of measurements required by scanning only along a low-density spiral trajectory, thus reducing the acquisition time. Through simulation-based performance characterization, we show that the 3D objects can be accurately restored with only 4% of holographic measurements. We also apply spiral scanning to actual holographic systems to show five to twenty-five times speed improvement in the imaging frame rate with high reconstruction fidelity. This approach thus would be critically important for single-pixel holographic recording of dynamic events, including microbead tracking and optical sectioning of 3D scenes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional remote sensing by optical scanning holography

Bradley W. Schilling and Glen C. Templeton
Appl. Opt. 40(30) 5474-5481 (2001)

Three-dimensional holographic fluorescence microscopy

Bradley W. Schilling, Ting-Chung Poon, Guy Indebetouw, Brian Storrie, K. Shinoda, Y. Suzuki, and Ming Hsien Wu
Opt. Lett. 22(19) 1506-1508 (1997)

Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples

Tianlong Man, Yuhong Wan, Wujuan Yan, Xiu-Hong Wang, Erwin J. G. Peterman, and Dayong Wang
Biomed. Opt. Express 9(6) 2614-2626 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
  4. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
    [Crossref]
  5. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18, 27499–27510 (2010).
    [Crossref]
  6. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
    [Crossref]
  7. J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38, 5196–5199 (2013).
    [Crossref]
  8. T.-C. Poon, “Optical scanning holography—a review of recent progress,” J. Opt. Soc. Korea 13, 406–415 (2009).
    [Crossref]
  9. T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).
  10. Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T.-C. Poon, and C. Zhou, “Speckle-free digital holographic recording of a diffusely reflecting object,” Opt. Express 21, 8183–8189 (2013).
    [Crossref]
  11. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
    [Crossref]
  12. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380–390 (2000).
    [Crossref]
  13. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
    [Crossref]
  14. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Display Technol. 6, 506–509 (2010).
    [Crossref]
  15. M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010).
    [Crossref]
  16. C. Fernandez-Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
    [Crossref]
  17. Y. Rivenson, A. Stern, and B. Javidi, “Overview of compressive sensing techniques applied in holography [invited],” Appl. Opt. 52, A423–A432 (2012).
    [Crossref]
  18. M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
    [Crossref]
  19. J. Swoger, M. Martínez-Corral, J. Huisken, and E. H. K. Stelzer, “Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy,” J. Opt. Soc. Am. A 19, 1910–1918 (2002).
    [Crossref]
  20. P. W. M. Tsang, J.-P. Liu, and T.-C. Poon, “Compressive optical scanning holography,” Optica 2, 476–483 (2015).
    [Crossref]
  21. P. W. M. Tsang, T.-C. Poon, and J.-P. Liu, “Adaptive optical scanning holography,” Sci. Rep. 6, 21636 (2016).
    [Crossref]
  22. G. Indebetouw, “Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning,” J. Mod. Opt. 49, 1479–1500 (2002).
    [Crossref]
  23. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007).
    [Crossref]
  24. J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt. 50, H285–H296 (2011).
    [Crossref]
  25. H. Ou, T.-C. Poon, K. K. Y. Wong, and E. Y. Lam, “Depth resolution enhancement in double-detection optical scanning holography,” Appl. Opt. 52, 3079–3087 (2013).
    [Crossref]
  26. Z. Xin, K. Dobson, Y. Shinoda, and T.-C. Poon, “Sectional image reconstruction in optical scanning holography using a random-phase pupil,” Opt. Lett. 35, 2934–2936 (2010).
    [Crossref]
  27. H. Di, K. Zheng, X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, T.-C. Poon, and C. Zhou, “Multiple-image encryption by compressive holography,” Appl. Opt. 51, 1000–1009 (2012).
    [Crossref]
  28. Y. Pan, W. Jia, J. Yu, K. Dobson, C. Zhou, Y. Wang, and T.-C. Poon, “Edge extraction using a time-varying vortex beam in incoherent digital holography,” Opt. Lett. 39, 4176–4179 (2014).
    [Crossref]
  29. N. Chen, Z. Ren, H. Ou, and E. Y. Lam, “Resolution enhancement of optical scanning holography with a spiral modulated point spread function,” Photon. Res. 4, 1–6 (2015).
    [Crossref]
  30. G. Rabut and J. Ellenberg, “Automatic real-time three-dimensional cell tracking by fluorescence microscopy,” J. Microsc. 216, 131–137 (2004).
    [Crossref]
  31. M. R. Edwards, R. W. Carlsen, and M. Sitti, “Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads,” Appl. Phys. Lett. 102, 143701 (2013).
    [Crossref]
  32. X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, and T.-C. Poon, “Blind sectional image reconstruction for optical scanning holography,” Opt. Lett. 34, 3098–3100 (2009).
    [Crossref]
  33. X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express 16, 17215–17226 (2008).
    [Crossref]
  34. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27, 1630–1637 (2010).
    [Crossref]
  35. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
    [Crossref]
  36. J. Romberg, “Compressive sensing by random convolution,” SIAM J. Imaging Sci. 2, 1098–1128 (2009).
    [Crossref]
  37. E. J. Candès and Y. Plan, “A probabilistic and ripless theory of compressed sensing,” IEEE Trans. Inf. Theory 57, 7235–7254 (2011).
    [Crossref]
  38. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51, 34–81 (2009).
    [Crossref]
  39. E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
    [Crossref]
  40. C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56, 507–530 (2013).
    [Crossref]
  41. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [Crossref]
  42. “Scanning galvo systems user guide,” Tech. rep., Thorlabs Inc. (2016). https://www.thorlabs.com/thorcat/18700/GVS001-Manual.pdf .
  43. R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
    [Crossref]
  44. J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,” IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010).
    [Crossref]
  45. G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23, 1699–1707 (2006).
    [Crossref]
  46. E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
    [Crossref]

2016 (1)

P. W. M. Tsang, T.-C. Poon, and J.-P. Liu, “Adaptive optical scanning holography,” Sci. Rep. 6, 21636 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (6)

H. Ou, T.-C. Poon, K. K. Y. Wong, and E. Y. Lam, “Depth resolution enhancement in double-detection optical scanning holography,” Appl. Opt. 52, 3079–3087 (2013).
[Crossref]

M. R. Edwards, R. W. Carlsen, and M. Sitti, “Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads,” Appl. Phys. Lett. 102, 143701 (2013).
[Crossref]

J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38, 5196–5199 (2013).
[Crossref]

Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T.-C. Poon, and C. Zhou, “Speckle-free digital holographic recording of a diffusely reflecting object,” Opt. Express 21, 8183–8189 (2013).
[Crossref]

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56, 507–530 (2013).
[Crossref]

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

2012 (2)

2011 (2)

J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt. 50, H285–H296 (2011).
[Crossref]

E. J. Candès and Y. Plan, “A probabilistic and ripless theory of compressed sensing,” IEEE Trans. Inf. Theory 57, 7235–7254 (2011).
[Crossref]

2010 (7)

2009 (6)

2008 (3)

X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express 16, 17215–17226 (2008).
[Crossref]

M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[Crossref]

2007 (1)

2006 (2)

E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23, 1699–1707 (2006).
[Crossref]

2005 (1)

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
[Crossref]

2004 (3)

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

G. Rabut and J. Ellenberg, “Automatic real-time three-dimensional cell tracking by fluorescence microscopy,” J. Microsc. 216, 131–137 (2004).
[Crossref]

L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
[Crossref]

2002 (2)

J. Swoger, M. Martínez-Corral, J. Huisken, and E. H. K. Stelzer, “Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy,” J. Opt. Soc. Am. A 19, 1910–1918 (2002).
[Crossref]

G. Indebetouw, “Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning,” J. Mod. Opt. 49, 1479–1500 (2002).
[Crossref]

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).

2000 (1)

1997 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Angelini, E.

Atlan, M.

Bishara, W.

Bovik, A.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Brady, D. J.

Brooker, G.

Bruckstein, A. M.

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51, 34–81 (2009).
[Crossref]

Buckley, B. W.

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

Candès, E. J.

E. J. Candès and Y. Plan, “A probabilistic and ripless theory of compressed sensing,” IEEE Trans. Inf. Theory 57, 7235–7254 (2011).
[Crossref]

E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

Carlsen, R. W.

M. R. Edwards, R. W. Carlsen, and M. Sitti, “Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads,” Appl. Phys. Lett. 102, 143701 (2013).
[Crossref]

Chen, N.

Choi, K.

Di, H.

Diebold, E. D.

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

Dobson, K.

Donoho, D.

M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

Donoho, D. L.

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51, 34–81 (2009).
[Crossref]

Edwards, M. R.

M. R. Edwards, R. W. Carlsen, and M. Sitti, “Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads,” Appl. Phys. Lett. 102, 143701 (2013).
[Crossref]

Elad, M.

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51, 34–81 (2009).
[Crossref]

Ellenberg, J.

G. Rabut and J. Ellenberg, “Automatic real-time three-dimensional cell tracking by fluorescence microscopy,” J. Microsc. 216, 131–137 (2004).
[Crossref]

Fernandez-Cull, C.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

Gossett, D. R.

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

Hong, J.

Horisaki, R.

Huisken, J.

Indebetouw, G.

Jalali, B.

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

Javidi, B.

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).

Jia, W.

Jiang, H.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56, 507–530 (2013).
[Crossref]

Kang, H.

Ke, J.

Kim, M. K.

Kim, T.

Kim, Y. S.

Klysubun, P.

Knight, K.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
[Crossref]

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).

Lam, E. Y.

Li, C.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56, 507–530 (2013).
[Crossref]

Lim, S.

Liu, J.-P.

P. W. M. Tsang, T.-C. Poon, and J.-P. Liu, “Adaptive optical scanning holography,” Sci. Rep. 6, 21636 (2016).
[Crossref]

P. W. M. Tsang, J.-P. Liu, and T.-C. Poon, “Compressive optical scanning holography,” Optica 2, 476–483 (2015).
[Crossref]

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).

Lustig, M.

M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

Mait, J. N.

Marim, M. M.

Marks, D. L.

Martínez-Corral, M.

Mattheiss, M.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).

Olivo-Marin, J.-C.

Ou, H.

Ozcan, A.

Pan, Y.

Pauly, J.

M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

Piano, E.

Plan, Y.

E. J. Candès and Y. Plan, “A probabilistic and ripless theory of compressed sensing,” IEEE Trans. Inf. Theory 57, 7235–7254 (2011).
[Crossref]

Pontiggia, C.

Poon, T.-C.

P. W. M. Tsang, T.-C. Poon, and J.-P. Liu, “Adaptive optical scanning holography,” Sci. Rep. 6, 21636 (2016).
[Crossref]

P. W. M. Tsang, J.-P. Liu, and T.-C. Poon, “Compressive optical scanning holography,” Optica 2, 476–483 (2015).
[Crossref]

Y. Pan, W. Jia, J. Yu, K. Dobson, C. Zhou, Y. Wang, and T.-C. Poon, “Edge extraction using a time-varying vortex beam in incoherent digital holography,” Opt. Lett. 39, 4176–4179 (2014).
[Crossref]

H. Ou, T.-C. Poon, K. K. Y. Wong, and E. Y. Lam, “Depth resolution enhancement in double-detection optical scanning holography,” Appl. Opt. 52, 3079–3087 (2013).
[Crossref]

Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T.-C. Poon, and C. Zhou, “Speckle-free digital holographic recording of a diffusely reflecting object,” Opt. Express 21, 8183–8189 (2013).
[Crossref]

H. Di, K. Zheng, X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, T.-C. Poon, and C. Zhou, “Multiple-image encryption by compressive holography,” Appl. Opt. 51, 1000–1009 (2012).
[Crossref]

J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt. 50, H285–H296 (2011).
[Crossref]

Z. Xin, K. Dobson, Y. Shinoda, and T.-C. Poon, “Sectional image reconstruction in optical scanning holography using a random-phase pupil,” Opt. Lett. 35, 2934–2936 (2010).
[Crossref]

T.-C. Poon, “Optical scanning holography—a review of recent progress,” J. Opt. Soc. Korea 13, 406–415 (2009).
[Crossref]

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
[Crossref]

X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, and T.-C. Poon, “Blind sectional image reconstruction for optical scanning holography,” Opt. Lett. 34, 3098–3100 (2009).
[Crossref]

X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express 16, 17215–17226 (2008).
[Crossref]

G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380–390 (2000).
[Crossref]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[Crossref]

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).

Rabut, G.

G. Rabut and J. Ellenberg, “Automatic real-time three-dimensional cell tracking by fluorescence microscopy,” J. Microsc. 216, 131–137 (2004).
[Crossref]

Ren, Z.

Repetto, L.

Rivenson, Y.

Romberg, J.

J. Romberg, “Compressive sensing by random convolution,” SIAM J. Imaging Sci. 2, 1098–1128 (2009).
[Crossref]

Rosen, J.

Rosset, S.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
[Crossref]

Santos, J.

M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

Saunders, M.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
[Crossref]

Schilling, B. W.

Sheikh, H.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Shinoda, K.

Shinoda, Y.

Simoncelli, E.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Sitti, M.

M. R. Edwards, R. W. Carlsen, and M. Sitti, “Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads,” Appl. Phys. Lett. 102, 143701 (2013).
[Crossref]

Stelzer, E. H. K.

Stern, A.

Storrie, B.

Suzuki, Y.

Swoger, J.

Tada, Y.

Tao, T.

E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

Tibshirani, R.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
[Crossref]

Tsang, P. W. M.

P. W. M. Tsang, T.-C. Poon, and J.-P. Liu, “Adaptive optical scanning holography,” Sci. Rep. 6, 21636 (2016).
[Crossref]

P. W. M. Tsang, J.-P. Liu, and T.-C. Poon, “Compressive optical scanning holography,” Optica 2, 476–483 (2015).
[Crossref]

Vo, H.

Wang, Y.

Wang, Z.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Wikner, D. A.

Wong, K. K. Y.

Woo, S. S.

Wu, M. H.

Xin, Z.

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).

Yang, J.

J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,” IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010).
[Crossref]

Yin, W.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56, 507–530 (2013).
[Crossref]

J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,” IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010).
[Crossref]

Yu, J.

Zhang, X.

Zhang, Y.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56, 507–530 (2013).
[Crossref]

J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,” IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010).
[Crossref]

Zheng, K.

Zhong, W.

Zhou, C.

Zhu, H.

Zhu, J.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
[Crossref]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

M. R. Edwards, R. W. Carlsen, and M. Sitti, “Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads,” Appl. Phys. Lett. 102, 143701 (2013).
[Crossref]

Comput. Optim. Appl. (1)

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56, 507–530 (2013).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,” IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010).
[Crossref]

IEEE Signal Process. Mag. (1)

M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25(2), 72–82 (2008).
[Crossref]

IEEE Trans. Image Process. (1)

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

IEEE Trans. Inf. Theory (2)

E. J. Candès and Y. Plan, “A probabilistic and ripless theory of compressed sensing,” IEEE Trans. Inf. Theory 57, 7235–7254 (2011).
[Crossref]

E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

J. Display Technol. (1)

J. Microsc. (1)

G. Rabut and J. Ellenberg, “Automatic real-time three-dimensional cell tracking by fluorescence microscopy,” J. Microsc. 216, 131–137 (2004).
[Crossref]

J. Mod. Opt. (1)

G. Indebetouw, “Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning,” J. Mod. Opt. 49, 1479–1500 (2002).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Korea (1)

J. R. Stat. Soc. B (1)

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via the fused lasso,” J. R. Stat. Soc. B 67, 91–108 (2005).
[Crossref]

Nat. Photonics (2)

E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, “Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy,” Nat. Photonics 7, 806–810 (2013).
[Crossref]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Optica (1)

Photon. Res. (1)

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).

Sci. Rep. (1)

P. W. M. Tsang, T.-C. Poon, and J.-P. Liu, “Adaptive optical scanning holography,” Sci. Rep. 6, 21636 (2016).
[Crossref]

SIAM J. Imaging Sci. (1)

J. Romberg, “Compressive sensing by random convolution,” SIAM J. Imaging Sci. 2, 1098–1128 (2009).
[Crossref]

SIAM Rev. (1)

A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51, 34–81 (2009).
[Crossref]

Other (3)

“Scanning galvo systems user guide,” Tech. rep., Thorlabs Inc. (2016). https://www.thorlabs.com/thorcat/18700/GVS001-Manual.pdf .

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (3253 KB)      Supplementary information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Optical scanning holography with a spiral trajectory. The 3D object, consisting of two diffused binary masks, is placed at an unknown depth z from the galvo-scanning system. Inset: (a) High-density raster scanning trajectory, compared to (b) low-density spiral-scanning trajectory. Note that a mirror image of the spiral scan path is adopted at alternate frames to minimize path discontinuity. Owing to the large area of the FZP, the illumination is highly overlapping even with a low-density spiral trajectory. Therefore, holographic information is preserved with reduced data redundancy and acquisition time. (c) Alternative configuration for lensless holographic imaging of fluorescent beads.
Fig. 2.
Fig. 2. Performance characterization of SuSHI with a spiral trajectory. (a) In the simulation, the 3D phantom consists of barcode patterns in two predefined depths. The phantom is then scanned by the time-varying FZP pattern with a spiral trajectory and then restored by the compressed sensing framework. The density of the spiral pattern determines the compression ratio (M/N). The restored object is compared with the ground truth from the raster scan to obtain an SSIM. (b) Examples of high-quality reconstructed 3D barcode (SSIM0.9) with increasing density. Red/blue colors represent the top/bottom layers, respectively. (c) SSIM score is plotted against compression ratio (M/N). All phantoms below 20% sparsity level achieve accurate restoration (SSIM0.9) at a 20% compression ratio.
Fig. 3.
Fig. 3. Compressed spiral-scanning measurement and reconstruction of physical 3D object with spiral scanning. (Top row) Subsampled complex-valued hologram data along the spiral path. The magnitude and phase values are represented by the saturation and hue, respectively, as shown in the color wheel of the legend. Undefined hologram pixels are displayed as the gray color. The corresponding numbers of spiral revolutions p, compression ratio M/N, and the reconstruction performance score (SSIM) are shown in Table 1. (Bottom row) The reconstructed image shows the proximal layer in red (z1=870  mm) and the distal layer in blue (z2=1070  mm). Empty space is depicted as white. (Inset) The zoomed-in view of the restored 3D object. Note the high quality of letter “S” down at the 25% compression ratio.
Fig. 4.
Fig. 4. Localization of fluorescent beads with lensless holography. (a) Subsampled hologram with spiral trajectory, (b) restored hologram, (c) restored locations of the fluorescent beads, (d) raster scan of the same area, and (e) the corresponding restored locations. The magnitude and phase values are represented by the saturation and hue, respectively, as shown in the color wheel of the legend. Undefined hologram samples are displayed as the gray color. (f) Image captured by CMOS camera under wide-field fluorescence microscope and (g) intensity-inverted version of the same image. The circles in dashed lines depict the imaging field of view of diameter 650 μm.

Tables (1)

Tables Icon

Table 1. Performance of SuSHI with Two-Section Binary Object

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=i[h(x,y,zi)*O(x,y,zi)]+n(x,y),
{O^i}=argmin{Oi}12Ii(hi*Oi)F2+αiW(Oi)1,
{O^i}=argmin{Oi}12ISBS[i(hi*Oi)]22+αiW(Oi)1,
K12[1+1μ(BS,{hi},W)],
S(xj,yj)={1if(xj,yj)=(R2πpθjcosθj,R2πpθjsinθj)0otherwise,,
W(O)=xO(x,y)+jyO(x,y).
W(O)=hσ(x,y)¯O(x+u,y+v)dxdy,

Metrics