Abstract

Weak scattering and short optical interaction lengths have, until this work, prevented the observation of trace gas Raman spectra using photonic integrated circuitry. Raman spectroscopy is a powerful analytical tool, and its implementation using chip-scale waveguide devices represents a critical step toward trace gas detection and identification in small handheld systems. Here, we report the first Raman scattering measurements of trace gases using integrated nanophotonic waveguides. These measurements were made possible using highly evanescent rib waveguides functionalized with a thin cladding layer designed to reversibly sorb organophosphonates and other hazardous chemical species. Raman spectra were collected using 9.6 mm-long waveguides exposed to ambient trace concentrations of ethyl acetate, methyl salicylate, and dimethyl sulfoxide with one-sigma limits of detection in 100 s integration times equal to 600 ppm, 360 ppb, and 7.6 ppb, respectively. Our analysis shows that the functionalized waveguide Raman efficiency can be enhanced by over nine orders of magnitude compared to traditional micro-Raman spectroscopy, paving the way toward a sensitive, low-cost, miniature, spectroscopy-based trace gas sensor inherently suitable for foundry-level photonic integrated circuit manufacturing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants

Nathan F. Tyndall, Todd H. Stievater, Dmitry A. Kozak, Kee Koo, R. Andrew McGill, Marcel W. Pruessner, William S. Rabinovich, and Scott A. Holmstrom
Opt. Lett. 43(19) 4803-4806 (2018)

Trace gas absorption spectroscopy using functionalized microring resonators

Todd H. Stievater, Marcel W. Pruessner, Doewon Park, William S. Rabinovich, R. Andrew McGill, Dmitry A. Kozak, Robert Furstenberg, Scott A. Holmstrom, and Jacob B. Khurgin
Opt. Lett. 39(4) 969-972 (2014)

Micromechanical photothermal spectroscopy of trace gases using functionalized polymers

T. H. Stievater, N. A. Papanicolaou, R. Bass, W. S. Rabinovich, and R. A. McGill
Opt. Lett. 37(12) 2328-2330 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
    [Crossref]
  2. R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137, 4669–4676 (2012).
    [Crossref]
  3. X. Li, Y. Xia, L. Zhan, and J. Huang, “Near-confocal cavity-enhanced Raman spectroscopy for multitrace-gas detection,” Opt. Lett. 33, 2143–2145 (2008).
    [Crossref]
  4. K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
    [Crossref]
  5. M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008).
    [Crossref]
  6. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86, 5278–5285 (2014).
    [Crossref]
  7. G. E. Walrafen and J. Stone, “Intensification of spontaneous Raman spectra by use of liquid core optical fibers,” Appl. Spectrosc. 26, 585–589 (1972).
    [Crossref]
  8. A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
    [Crossref]
  9. G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide enhanced Raman spectroscopy,” Sens. Actuators B 207, 732–739 (2015).
    [Crossref]
  10. P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguides-effect of cladding,” Opt. Commun. 24, 135–138 (1978).
    [Crossref]
  11. P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17, 3226–3231 (1978).
    [Crossref]
  12. A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
    [Crossref]
  13. A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.
  14. B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
    [Crossref]
  15. R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
    [Crossref]
  16. D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).
  17. T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
    [Crossref]
  18. F. Galeener and J. C. Mikkelsen, “Raman studies of the thermal oxide of silicon,” Solid State Commun. 37, 719–723 (1981).
    [Crossref]
  19. R. H. Stolen, “Nolinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).
  20. N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectrosopic studies on αβ, and amorphous Si3N4,” J. Non-Cryst. Solids 43, 7–15 (1981).
    [Crossref]
  21. G. Lucovsky, “Chemical effects on the frequencies of Si-H vibrations in amorphous solids,” Solid State Commun. 29, 571–576 (1979).
    [Crossref]
  22. “Raman spectra of dimethyl sulfoxide 67-68-5 | Information about the spectra—Wing,” Shanghai Wing Science and Technology Co., Ltd., 2016, http://www.basechem.org/chemical/image/104770 .
  23. “Raman spectra of methyl salicylate 119-36-8 | Information about the spectra—Wing,” Shanghai Wing Science and Technology Co., Ltd., 2016, http://www.basechem.org/chemical/image/97307 .
  24. “Raman spectra of ethyl acetate 141-78-6 | Information about the spectra—Wing,” Shanghai Wing Science and Technology Co., Ltd., 2016, http://www.basechem.org/chemical/image/85022 .
  25. T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
    [Crossref]
  26. F. Kullander, L. Landström, H. Lundén, and P. Wästerby, “Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants,” Proc. SPIE 9455, 94550S (2015).
    [Crossref]
  27. E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
    [Crossref]

2016 (1)

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

2015 (3)

F. Kullander, L. Landström, H. Lundén, and P. Wästerby, “Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants,” Proc. SPIE 9455, 94550S (2015).
[Crossref]

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide enhanced Raman spectroscopy,” Sens. Actuators B 207, 732–739 (2015).
[Crossref]

2014 (3)

2013 (1)

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref]

2012 (1)

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137, 4669–4676 (2012).
[Crossref]

2010 (1)

B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
[Crossref]

2008 (3)

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008).
[Crossref]

X. Li, Y. Xia, L. Zhan, and J. Huang, “Near-confocal cavity-enhanced Raman spectroscopy for multitrace-gas detection,” Opt. Lett. 33, 2143–2145 (2008).
[Crossref]

2001 (1)

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

1997 (1)

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

1991 (1)

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[Crossref]

1981 (2)

F. Galeener and J. C. Mikkelsen, “Raman studies of the thermal oxide of silicon,” Solid State Commun. 37, 719–723 (1981).
[Crossref]

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectrosopic studies on αβ, and amorphous Si3N4,” J. Non-Cryst. Solids 43, 7–15 (1981).
[Crossref]

1980 (1)

R. H. Stolen, “Nolinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).

1979 (1)

G. Lucovsky, “Chemical effects on the frequencies of Si-H vibrations in amorphous solids,” Solid State Commun. 29, 571–576 (1979).
[Crossref]

1978 (2)

P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17, 3226–3231 (1978).
[Crossref]

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguides-effect of cladding,” Opt. Commun. 24, 135–138 (1978).
[Crossref]

1972 (1)

Aggarwal, I.

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

Baets, R.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Bernini, R.

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide enhanced Raman spectroscopy,” Sens. Actuators B 207, 732–739 (2015).
[Crossref]

Bilodeau, T.

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

Bucholtz, F.

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

Buric, M.

Chen, K.

Chrimes, A. F.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref]

Chu, J.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137, 4669–4676 (2012).
[Crossref]

Chung, R.

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

Dagenais, D.

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

Deri, R. J.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[Crossref]

Dhakal, A.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Ewing, K.

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

Falk, J.

Frosch, T.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86, 5278–5285 (2014).
[Crossref]

Furstenberg, R.

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

Galeener, F.

F. Galeener and J. C. Mikkelsen, “Raman studies of the thermal oxide of silicon,” Solid State Commun. 37, 719–723 (1981).
[Crossref]

Hanf, S.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86, 5278–5285 (2014).
[Crossref]

Higgins, B. A.

B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
[Crossref]

Hippler, M.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137, 4669–4676 (2012).
[Crossref]

Holmstrom, S. A.

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

Houser, E. J.

B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
[Crossref]

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

Huang, J.

Kalantar-zadeh, K.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref]

Kapon, E.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[Crossref]

Keiner, R.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86, 5278–5285 (2014).
[Crossref]

Khoshmanesh, K.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref]

Khurgin, J. B.

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

Kiefer, J.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

Kohl, J. G.

B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
[Crossref]

Kozak, D. A.

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

Kullander, F.

F. Kullander, L. Landström, H. Lundén, and P. Wästerby, “Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants,” Proc. SPIE 9455, 94550S (2015).
[Crossref]

Landström, L.

F. Kullander, L. Landström, H. Lundén, and P. Wästerby, “Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants,” Proc. SPIE 9455, 94550S (2015).
[Crossref]

Le Thomas, N.

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Leipertz, A.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

Li, X.

Lucovsky, G.

G. Lucovsky, “Chemical effects on the frequencies of Si-H vibrations in amorphous solids,” Solid State Commun. 29, 571–576 (1979).
[Crossref]

Lundén, H.

F. Kullander, L. Landström, H. Lundén, and P. Wästerby, “Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants,” Proc. SPIE 9455, 94550S (2015).
[Crossref]

McGill, R. A.

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
[Crossref]

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

Mikkelsen, J. C.

F. Galeener and J. C. Mikkelsen, “Raman studies of the thermal oxide of silicon,” Solid State Commun. 37, 719–723 (1981).
[Crossref]

Mitchell, A.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref]

Mlsna, T. E.

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

Mowery, R. L.

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

Nau, G.

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

Nguyen, V.

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

Nguyen, V. K.

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

O’Connor, P.

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguides-effect of cladding,” Opt. Commun. 24, 135–138 (1978).
[Crossref]

P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17, 3226–3231 (1978).
[Crossref]

Park, D.

Persichetti, G.

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide enhanced Raman spectroscopy,” Sens. Actuators B 207, 732–739 (2015).
[Crossref]

Peyskens, F.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Popp, J.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86, 5278–5285 (2014).
[Crossref]

Prochazka, S.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectrosopic studies on αβ, and amorphous Si3N4,” J. Non-Cryst. Solids 43, 7–15 (1981).
[Crossref]

Pruessner, M. W.

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

Rabinovich, W. S.

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

Salter, R.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137, 4669–4676 (2012).
[Crossref]

Schorsch, S.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

Seeger, T.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

Simonson, D. L.

B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
[Crossref]

Skirtach, A.

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Solin, S. A.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectrosopic studies on αβ, and amorphous Si3N4,” J. Non-Cryst. Solids 43, 7–15 (1981).
[Crossref]

Steuer, S.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

Stievater, T. H.

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39, 969–972 (2014).
[Crossref]

Stoddart, P. R.

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref]

Stolen, R. H.

R. H. Stolen, “Nolinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).

Stone, J.

Subramanian, A.

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Subramanian, A. Z.

Tauc, J.

P. O’Connor and J. Tauc, “Light scattering in optical waveguides,” Appl. Opt. 17, 3226–3231 (1978).
[Crossref]

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguides-effect of cladding,” Opt. Commun. 24, 135–138 (1978).
[Crossref]

Testa, G.

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide enhanced Raman spectroscopy,” Sens. Actuators B 207, 732–739 (2015).
[Crossref]

Thomas, N. L.

Wada, N.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectrosopic studies on αβ, and amorphous Si3N4,” J. Non-Cryst. Solids 43, 7–15 (1981).
[Crossref]

Walrafen, G. E.

Wästerby, P.

F. Kullander, L. Landström, H. Lundén, and P. Wästerby, “Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants,” Proc. SPIE 9455, 94550S (2015).
[Crossref]

Weikl, M. C.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

Wong, J.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectrosopic studies on αβ, and amorphous Si3N4,” J. Non-Cryst. Solids 43, 7–15 (1981).
[Crossref]

Woodruff, S.

Wuytens, P.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. L. Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39, 4025–4028 (2014).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Xia, Y.

Yan, D.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86, 5278–5285 (2014).
[Crossref]

Zhan, L.

Anal. Chem. (1)

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Anal. Chem. 86, 5278–5285 (2014).
[Crossref]

Anal. Chim. Acta (1)

K. Ewing, G. Nau, T. Bilodeau, D. Dagenais, F. Bucholtz, and I. Aggarwal, “Monitoring the absorption of organic vapors to a solid phase extraction medium applications to detection of trace volatile organic compounds by integration of solid phase absorbents with fiber optic Raman spectroscopy,” Anal. Chim. Acta 340, 227–232 (1997).
[Crossref]

Analyst (1)

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137, 4669–4676 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Chem. Soc. Rev. (1)

A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, “Microfluidics and Raman microscopy: current applications and future challenges,” Chem. Soc. Rev. 42, 5880–5906 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[Crossref]

J. Non-Cryst. Solids (1)

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectrosopic studies on αβ, and amorphous Si3N4,” J. Non-Cryst. Solids 43, 7–15 (1981).
[Crossref]

J. Polym. Sci. A (1)

B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, “Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer,” J. Polym. Sci. A 48, 3000–3009 (2010).
[Crossref]

Meas. Sci. Technol. (1)

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
[Crossref]

Opt. Commun. (1)

P. O’Connor and J. Tauc, “Raman spectrum of optical fiber waveguides-effect of cladding,” Opt. Commun. 24, 135–138 (1978).
[Crossref]

Opt. Lett. (3)

Proc. IEEE (1)

R. H. Stolen, “Nolinearity in fiber transmission,” Proc. IEEE 68, 1232–1236 (1980).

Proc. SPIE (3)

T. H. Stievater, J. B. Khurgin, S. A. Holmstrom, D. A. Kozak, M. W. Pruessner, W. S. Rabinovich, and R. A. McGill, “Nanophotonic waveguides for chip-scale Raman spectroscopy: theoretical considerations,” Proc. SPIE 9824, 982404 (2016).
[Crossref]

F. Kullander, L. Landström, H. Lundén, and P. Wästerby, “Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants,” Proc. SPIE 9455, 94550S (2015).
[Crossref]

D. A. Kozak, R. A. McGill, T. H. Stievater, R. Furstenberg, M. W. Pruessner, and V. Nguyen, “Infrared spectroscopy for chemical agent detection using tailored hypersorbent materials,” Proc. SPIE 9482, 94820E (2015).

Sens. Actuators B (1)

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide enhanced Raman spectroscopy,” Sens. Actuators B 207, 732–739 (2015).
[Crossref]

Solid State Commun. (2)

G. Lucovsky, “Chemical effects on the frequencies of Si-H vibrations in amorphous solids,” Solid State Commun. 29, 571–576 (1979).
[Crossref]

F. Galeener and J. C. Mikkelsen, “Raman studies of the thermal oxide of silicon,” Solid State Commun. 37, 719–723 (1981).
[Crossref]

Talanta (1)

E. J. Houser, T. E. Mlsna, V. K. Nguyen, R. Chung, R. L. Mowery, and R. A. McGill, “Rational materials design of sorbent coatings for explosives: applications with chemical sensors,” Talanta 54, 469–485 (2001).
[Crossref]

Other (4)

A. Dhakal, P. Wuytens, F. Peyskens, A. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic lab-on-a-chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

“Raman spectra of dimethyl sulfoxide 67-68-5 | Information about the spectra—Wing,” Shanghai Wing Science and Technology Co., Ltd., 2016, http://www.basechem.org/chemical/image/104770 .

“Raman spectra of methyl salicylate 119-36-8 | Information about the spectra—Wing,” Shanghai Wing Science and Technology Co., Ltd., 2016, http://www.basechem.org/chemical/image/97307 .

“Raman spectra of ethyl acetate 141-78-6 | Information about the spectra—Wing,” Shanghai Wing Science and Technology Co., Ltd., 2016, http://www.basechem.org/chemical/image/85022 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Top view: optical microscope image of the coated waveguides. The set of five horizontal dark lines are 2 μm-wide rib waveguides, and the shaded area with interference fringes is the sorbant-coated region. More than 98% of the length of the sample was coated with sorbent for this work. (b) Cross-sectional diagram of the coated waveguide structure overlaid with a two-dimensional color map surface plot of the horizontal component of electric field calculated using a finite element mode solver. (c) The experimental setup for collecting the Raman signal. PMF, polarization-maintaining fiber; BPF, bandpass filter; RO, refractive objective; SO, Schwarzschild reflective objective; LPF, long-pass filter; OAP, off-axis parabolic mirror.
Fig. 2.
Fig. 2. Raman spectra collected from an HCSFA2-coated 2.0 μm-wide waveguide both prior to and during exposure to DMSO. The spectrum during exposure to DMSO is shifted upward for clarity. The inset shows an enlargement of the range 650 725    cm 1 with no upward shift for the DMSO spectrum.
Fig. 3.
Fig. 3. Differential Raman spectra collected due to vapor-phase exposure to DMSO, MeS, and EA at the concentrations indicated. The spectrum above the graph for each analyte is the liquid-phase Raman spectrum from [2224]. The concentration dependence for the boxed Raman line is shown to the right of each graph.
Fig. 4.
Fig. 4. Sorption and desorption times for MeS and DMSO. Similar graphs are not shown for EA because the sorption and desorption times were faster than the spectrum collection interval.

Tables (1)

Tables Icon

Table 1. Measured Raman Resonances (in cm 1 ) and Reference Values

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = n HC 2 λ s λ p σ L N HC 8 π n g HC | E ( x , y ) | 4 d x d y ( n 2 ( x , y ) | E ( x , y ) | 2 d x d y ) 2 ,
η / η μ R = n HC 2 λ s 2 L 8 π t HC n g HC | E ( x , y ) | 4 d x d y ( n 2 ( x , y ) | E ( x , y ) | 2 d x d y ) 2 ,

Metrics