Abstract

Optically pumped passively modelocked semiconductor disk lasers (SDLs) provide superior performance in average output power, a broad range of operation wavelengths, and reduced complexity. Here, we present record performance with high average power and pulse durations as short as 100 fs with a semiconductor saturable absorber mirror (SESAM) modelocked vertical external-cavity surface-emitting laser (VECSEL) at a center wavelength of 1034 nm. A comprehensive pulse characterization confirms fundamental modelocking with a close to transform-limited output pulse of 128 fs and with negatively chirped output pulses as short as 107 fs, which are externally compressed to 96 fs with a single path through a 2-mm-thick ZnSe plate. For the “96 fs result” the pulse repetition rate is 1.6 GHz, the average output power is 100 mW, and the pulse peak power is 560 W. The transform-limited optical spectrum could in principle support pulses as short as 65 fs with higher order dispersion compensation. We measured the most relevant spectral and nonlinear VECSEL and SESAM parameters and used them as input parameters for our pulse formation simulations. These simulations agree well with our experimental results and provide an outlook for further performance scaling of ultrafast SDL technology.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser

Mario Mangold, Christian A. Zaugg, Sandro M. Link, Matthias Golling, Bauke W. Tilma, and Ursula Keller
Opt. Express 22(5) 6099-6107 (2014)

Gigahertz self-referenceable frequency comb from a semiconductor disk laser

Christian A. Zaugg, Alexander Klenner, Mario Mangold, Aline S. Mayer, Sandro M. Link, Florian Emaury, Matthias Golling, Emilio Gini, Clara J. Saraceno, Bauke W. Tilma, and Ursula Keller
Opt. Express 22(13) 16445-16455 (2014)

Femtosecond high-power quantum dot vertical external cavity surface emitting laser

Martin Hoffmann, Oliver D. Sieber, Valentin J. Wittwer, Igor L. Krestnikov, Daniil A. Livshits, Yohan Barbarin, Thomas Südmeyer, and Ursula Keller
Opt. Express 19(9) 8108-8116 (2011)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
    [Crossref]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  3. B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
    [Crossref]
  4. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
    [Crossref]
  5. S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
    [Crossref]
  6. M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
    [Crossref]
  7. T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
    [Crossref]
  8. B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical emitting semiconductor laser with more than 20  W average output power in a fundamental transverse mode,” Opt. Lett. 33, 2719–2721 (2008).
    [Crossref]
  9. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
    [Crossref]
  10. B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
    [Crossref]
  11. M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23, 22043–22059 (2015).
    [Crossref]
  12. I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
    [Crossref]
  13. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
    [Crossref]
  14. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
    [Crossref]
  15. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
    [Crossref]
  16. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power,” Opt. Lett. 39, 9–12 (2014).
    [Crossref]
  17. C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.
  18. M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov, “85.7  MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states,” Opt. Express 21, 25526–25531 (2013).
    [Crossref]
  19. M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
    [Crossref]
  20. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
    [Crossref]
  21. R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
    [Crossref]
  22. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2, 739–747 (2011).
    [Crossref]
  23. C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
    [Crossref]
  24. A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22, 31008–31019 (2014).
    [Crossref]
  25. A. H. Quarterman, L. E. Hooper, P. J. Mosley, and K. G. Wilcox, “Gigahertz pulse source by compression of mode-locked VECSEL pulses coherently broadened in the normal dispersion regime,” Opt. Express 22, 12096–12101 (2014).
    [Crossref]
  26. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [Crossref]
  27. A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
    [Crossref]
  28. A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
    [Crossref]
  29. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [Crossref]
  30. A. Klenner and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23, 8532–8544 (2015).
    [Crossref]
  31. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
    [Crossref]
  32. M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
    [Crossref]
  33. D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
    [Crossref]
  34. O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
    [Crossref]
  35. C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
    [Crossref]
  36. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16, 7571–7579 (2008).
    [Crossref]
  37. M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
    [Crossref]
  38. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
    [Crossref]
  39. S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
    [Crossref]
  40. A. Gosteva, M. Haiml, R. Paschotta, and U. Keller, “Noise-related resolution limit of dispersion measurements with white-light interferometers,” J. Opt. Soc. Am. B 22, 1868–1874 (2005).
    [Crossref]
  41. I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33, 75–80 (2016).
    [Crossref]

2016 (4)

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33, 75–80 (2016).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref]

2015 (4)

2014 (8)

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

A. H. Quarterman, L. E. Hooper, P. J. Mosley, and K. G. Wilcox, “Gigahertz pulse source by compression of mode-locked VECSEL pulses coherently broadened in the normal dispersion regime,” Opt. Express 22, 12096–12101 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22, 31008–31019 (2014).
[Crossref]

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

2013 (3)

2012 (2)

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

2011 (4)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2, 739–747 (2011).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

2010 (1)

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

2009 (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

2008 (3)

2007 (1)

M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
[Crossref]

2006 (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

2005 (2)

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

A. Gosteva, M. Haiml, R. Paschotta, and U. Keller, “Noise-related resolution limit of dispersion measurements with white-light interferometers,” J. Opt. Soc. Am. B 22, 1868–1874 (2005).
[Crossref]

2003 (1)

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

2000 (1)

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

1999 (2)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Alfieri, C. G. E.

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

Apostolopoulos, V.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Arnold, M.

M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
[Crossref]

Artigas, D.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Aviles-Espinosa, R.

Barbarin, Y.

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Beere, H. E.

Behfar, K.

M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
[Crossref]

Bek, R.

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

Bellancourt, A.-R.

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Butkus, M.

Chae, S.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Chatterjee, S.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Chen Sverre, T.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

Chernikov, A.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Cho, Y. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Dhanjal, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Elsmere, S. P.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Emaury, F.

Erneux, T.

Farrer, I.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Felder, F.

M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
[Crossref]

Filippidis, G.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Gaeta, A. L.

Gini, E.

Golling, M.

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23, 22043–22059 (2015).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
[Crossref]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.

Gosteva, A.

Grange, R.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Hader, J.

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33, 75–80 (2016).
[Crossref]

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Haiml, M.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

A. Gosteva, M. Haiml, R. Paschotta, and U. Keller, “Noise-related resolution limit of dispersion measurements with white-light interferometers,” J. Opt. Soc. Am. B 22, 1868–1874 (2005).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Hamilton, C.

Hamilton, C. J.

Häring, R.

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Head, C. R.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

Hein, A.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

Heinen, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Hoffmann, M.

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical emitting semiconductor laser with more than 20  W average output power in a fundamental transverse mode,” Opt. Lett. 33, 2719–2721 (2008).
[Crossref]

M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
[Crossref]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Hönninger, C.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Hoogland, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Hooper, L. E.

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Iwaniuk, D.

Jeon, H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Jeong, C. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Jetter, M.

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

Johnson, A. R.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kahle, H.

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

Kaneda, Y.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Keller, U.

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref]

A. Klenner and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23, 8532–8544 (2015).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23, 22043–22059 (2015).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22, 31008–31019 (2014).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2, 739–747 (2011).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical emitting semiconductor laser with more than 20  W average output power in a fundamental transverse mode,” Opt. Lett. 33, 2719–2721 (2008).
[Crossref]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16, 7571–7579 (2008).
[Crossref]

M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

A. Gosteva, M. Haiml, R. Paschotta, and U. Keller, “Noise-related resolution limit of dispersion measurements with white-light interferometers,” J. Opt. Soc. Am. B 22, 1868–1874 (2005).
[Crossref]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.

Kersteen, G.

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

Kilen, I.

Kim, J.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Klenner, A.

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

A. Klenner and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23, 8532–8544 (2015).
[Crossref]

A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22, 31008–31019 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Koch, M.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Koch, S. W.

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33, 75–80 (2016).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kovsh, A. R.

M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
[Crossref]

Krainer, L.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

Krestnikov, I. L.

Kunert, B.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Lamont, M. R. E.

Laurain, A.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

Lee, S. N.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Link, S. M.

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

Lipson, M.

Liverini, V.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

Livshits, D. A.

Loza-Alvarez, P.

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Luke, K.

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Maas, D. J. H. C.

Maker, G.

Malcolm, G.

Malcolm, G. P. A.

Mangold, M.

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23, 22043–22059 (2015).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

Marchese, S. V.

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Mart, C.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Mayer, A. S.

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Michler, P.

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

Mihoubi, Z.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Mikhrin, S. S.

M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
[Crossref]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Moloney, J. V.

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33, 75–80 (2016).
[Crossref]

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Morier-Genoud, F.

Moser, M.

Mosley, P. J.

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Okawachi, Y.

Park, S. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Park, Y.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Paschotta, R.

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Polanik, M.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

Quarterman, A. H.

A. H. Quarterman, L. E. Hooper, P. J. Mosley, and K. G. Wilcox, “Gigahertz pulse source by compression of mode-locked VECSEL pulses coherently broadened in the normal dispersion regime,” Opt. Express 22, 12096–12101 (2014).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Rafailov, E. U.

Rahim, M.

M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
[Crossref]

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Ritchie, D. A.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Roberts, S. J.

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Rudin, B.

Rutz, A.

Sakong, T.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Santos, S. I. C. O.

Saraceno, C. J.

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Schilt, S.

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Schon, S.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

Schriber, C.

Schwarzbäck, T.

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

Shaw, E. A.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

Sieber, O. D.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.

Sparenberg, M.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

Spühler, G. J.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Stolz, W.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Südmeyer, T.

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22, 31008–31019 (2014).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2, 739–747 (2011).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16, 7571–7579 (2008).
[Crossref]

B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical emitting semiconductor laser with more than 20  W average output power in a fundamental transverse mode,” Opt. Lett. 33, 2719–2721 (2008).
[Crossref]

M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
[Crossref]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Tilma, B. W.

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23, 22043–22059 (2015).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.

Tropper, A.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Tropper, A. C.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

Turnbull, A. P.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

Unger, P.

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Viktorov, E. A.

Waldburger, D.

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

Wang, T. L.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Weber, A.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Weingarten, K. J.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2, 739–747 (2011).
[Crossref]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Wilcox, K. G.

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Wittwer, V. J.

Yarborough, J. M.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

Yeom, G. Y.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

Zaugg, C. A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.

Zogg, H.

M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
[Crossref]

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Appl. Phys. B (4)

M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733–736 (2008).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113, 133–145 (2013).
[Crossref]

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81, 27–32 (2005).
[Crossref]

Appl. Phys. Lett. (4)

R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “All quantum dot mode-locked semiconductor disk laser emitting at 655  nm,” Appl. Phys. Lett. 105, 082107 (2014).
[Crossref]

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83, 2121–2123 (2003).
[Crossref]

M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5  μm wavelength,” Appl. Phys. Lett. 91, 151102 (2007).
[Crossref]

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92  GHz or pulse duration shorter than 110  fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).
[Crossref]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040  nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[Crossref]

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15  W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26, 131–133 (2014).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135–1137 (2000).
[Crossref]

J. Opt. Soc. Am. B (3)

Light Sci. Appl. (1)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4, e310 (2015).
[Crossref]

Nat. Photonics (2)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26  Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Opt. Express (13)

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100  GHz with a high-power semiconductor disk laser,” Opt. Express 22, 6099–6107 (2014).
[Crossref]

A. Klenner and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23, 8532–8544 (2015).
[Crossref]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16, 7571–7579 (2008).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148 (2012).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22, 16445–16455 (2014).
[Crossref]

A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22, 31008–31019 (2014).
[Crossref]

A. H. Quarterman, L. E. Hooper, P. J. Mosley, and K. G. Wilcox, “Gigahertz pulse source by compression of mode-locked VECSEL pulses coherently broadened in the normal dispersion regime,” Opt. Express 22, 12096–12101 (2014).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24, 11043–11053 (2016).
[Crossref]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23, 15440–15451 (2015).
[Crossref]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19, 8108–8116 (2011).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov, “85.7  MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states,” Opt. Express 21, 25526–25531 (2013).
[Crossref]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23, 22043–22059 (2015).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

Proc. SPIE (2)

C. R. Head, A. Hein, A. P. Turnbull, M. Polanik, E. A. Shaw, T. Chen Sverre, P. Unger, and A. C. Tropper, “High-order dispersion in sub-200-fs pulsed VECSELs,” Proc. SPIE 9734, 973408 (2016).
[Crossref]

D. Waldburger, C. G. E. Alfieri, S. M. Link, E. Gini, M. Golling, M. Mangold, B. W. Tilma, and U. Keller, “Pulse shortening of an ultrafast VECSEL,” Proc. SPIE 9734, 973409 (2016).
[Crossref]

Other (1)

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100  MHz passively modelocked VECSEL,” in Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, 2013), paper CW1G.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Overview of the pulse peak power versus pulse duration of the state-of-the-art femtosecond SDLs operating at a center wavelength around 1 μm using InGaAs gain layers [3,11]. The yellow stars indicate the two new milestone results presented in this paper.

Fig. 2.
Fig. 2.

V-shaped cavity design with SESAM and output coupler as end mirrors and the VECSEL gain chip as a folding mirror. The output coupler has a 0.9% transmission and a radius of curvature of 100 mm. The folding angle is 20°. The 1-mm-thick fused silica Brewster plate was only used for the “96 fs result.” (a) Cavity for the “96 fs result”: L1=4.8  cm and L2=4.2  cm. (b) Cavity for the “128 fs result”: L1=3.4  cm and L2=4.8  cm. (c) VECSEL layer stack, with a DBR, a strain-compensated active region with 10 InGaAs quantum wells, and a multipurpose AR section. The center laser wavelength is designed to be 1030 nm, and the white curve indicates the corresponding standing electric field intensity (normalized to 4 outside the structure).

Fig. 3.
Fig. 3.

(a) Average field intensity in the gain quantum wells of the VECSEL (blue) normalized to the incoming field intensity (i.e., a 100% reflector results in a field intensity of 4) and the measured optical spectrum (red). (b) Measured GDD of the “unpumped” VECSEL structure at normal incidence and at room temperature (circles). For simulation of the modelocking results, we used the dispersion (both second and third order) as an adjustable parameter (Table 1). The dispersion explaining our pulse durations is shown for the “128 fs result” (blue line) and the “96 fs result” (red line).

Fig. 4.
Fig. 4.

“128 fs result”: modelocking characterization of the 128 fs pulses at 80 mW average output power, a peak power of 303 W, and a pulse repetition rate of 1.81 GHz. (a) Measured SHG-FROG spectrogram. (b) Retrieved FROG spectrogram (error: 0.0019). (c) Retrieved temporal intensity profile and temporal phase. (d) Intensity autocorrelation with corresponding sech2 fit (inset: long-span autocorrelation without any satellite pulses). (e) Retrieved spectrum and spectral phase overlaid with the measured optical spectrum with a FWHM bandwidth of 9.48 nm. The time–bandwidth product is 1.09 times the ideal value for a sech2 pulse shape, i.e., very close to perfect bandwidth-limited pulse duration. (f) Optical spectrum in logarithmic scale centered around 1033 nm, measured with a RBW of 0.1 nm. (g) Long-span microwave spectrum with a RBW of 300 kHz. (h) 15 MHz microwave spectrum at 1.81 GHz, measured with a RBW of 1.56 kHz. (i) Gaussian beam profile confirmed with a measured M2<1.05±0.05 in two orthogonal directions.

Fig. 5.
Fig. 5.

“96 fs result”: modelocking characterization of the 96-fs pulses at 100 mW average output power, a peak power of 560 W and a pulse repetition rate of 1.63 GHz. (a) Measured SHG-FROG spectrogram. (b) Retrieved FROG spectrogram (error: 0.0004). (c) Retrieved temporal intensity profile and temporal phase. (d) Intensity autocorrelations with corresponding sech2 fits of the 107 fs and 96 fs pulses (inset: long-span autocorrelation without any satellite pulses). (e) Retrieved spectrum and spectral phase overlaid with the measured optical spectrum with a FWHM bandwidth of 17.5 nm. The time–bandwidth product is 1.47 times the ideal value for a sech2 pulse shape, i.e., with better dispersion compensation, we could obtain even shorter pulses. (f) Optical spectrum in logarithmic scale centered around 1034 nm, measured with a RBW of 0.1 nm. (g) Long-span microwave spectrum with a RBW of 300 kHz. (h) 15 MHz microwave spectrum at 1.63 GHz, measured with a RBW of 97.7 Hz. (i) Gaussian beam profile confirmed with a measured M2<1.05±0.05 in two orthogonal directions.

Fig. 6.
Fig. 6.

Spectral gain measurements. (a) Spectrally resolved reflectivity for different pump intensities at a constant heat-sink temperature of 15°C. (b) Spectrally resolved reflectivity for different heat-sink temperatures at a constant pump intensity of Ip=57  kW/cm2.

Fig. 7.
Fig. 7.

Gain saturation measurements. (a) Fluence-dependent reflectivity for different pump intensities at a heat-sink temperature of 15°C. (b) Saturation fluence as a function of heat-sink temperature and equivalent wavelength. (c) Small signal reflectivity as a function of heat-sink temperature and equivalent wavelength. The equivalent wavelength accounts for the temperature-induced wavelength shift of the gain peak wavelength for matching of measurement series. See text for a more detailed definition of equivalent wavelength. (d) Induced absorption as a function of wavelength and heat-sink temperature.

Fig. 8.
Fig. 8.

Numerical pulse formation simulations using the 128 fs input parameters from Table 1. Cavity round-trip dispersion management for both (a) a shorter pulse duration and (b) a higher peak power as functions of second-order dispersion (i.e., GDD) and TOD is shown. The best performance is obtained in the red shaded area, and the “128 fs result” is marked with a black cross.

Tables (1)

Tables Icon

Table 1. Complete List of Input Parameters Used for the Pulse Formation Simulationa

Metrics