Abstract

Achieving accurate control of the spatial energy distribution of extended sources is an ultimate goal of illumination design and has considerable significance in practical applications. To achieve this goal, we, for the first time, present a direct method to design compact and ultra-efficient freeform lenses for extended sources in three-dimensional geometries. Instead of using the traditional Monte Carlo ray-tracing and feedback methods to address the challenges caused by the extended sources, we develop a novel design method to numerically calculate both surfaces of the freeform lens directly. The proposed method is very efficient and robust in designing freeform lenses for Lambertian and non-Lambertian extended light sources. The final freeform lenses are very compact and highly efficient and can significantly reduce glare and light trespass.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of compact and ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry

Rengmao Wu, Hong Hua, Pablo Benítez, Juan C. Miñano, and Rongguang Liang
Opt. Express 24(5) 5078-5086 (2016)

Energy feedback freeform lenses for uniform illumination of extended light source LEDs

Zongtao Li, Shudong Yu, Liwei Lin, Yong Tang, Xinrui Ding, Wei Yuan, and Binhai Yu
Appl. Opt. 55(36) 10375-10381 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).
  2. H. Ries and J. Muschaweck, J. Opt. Soc. Am. A 19, 590 (2002).
    [Crossref]
  3. Y. Ding, X. Liu, Z. Zheng, and P. Gu, Opt. Express 16, 12958 (2008).
    [Crossref]
  4. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, Opt. Express 18, 5295 (2010).
    [Crossref]
  5. A. Bruneton, A. Bäuerle, R. Wester, J. Stollenwerk, and P. Loosen, Opt. Express 21, 10563 (2013).
    [Crossref]
  6. R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, Opt. Lett. 38, 229 (2013).
    [Crossref]
  7. W. J. Cassarly and M. J. Hayford, Proc. SPIE 4832, 258 (2002).
    [Crossref]
  8. S. Hu, K. Du, T. Mei, L. Wan, and N. Zhu, Opt. Express 23, 20350 (2015).
    [Crossref]
  9. J. Bortz and N. Shatz, Proc. SPIE 6338, 633805 (2006).
    [Crossref]
  10. Y. Luo, Z. Feng, Y. Han, and H. Li, Opt. Express 18, 9055 (2010).
    [Crossref]
  11. K. Wang, Y. J. Han, H. T. Li, and Y. Luo, Opt. Express 21, 19750 (2013).
    [Crossref]
  12. R. Wu and H. Hua, Opt. Express 24, 1017 (2016).
    [Crossref]
  13. http://www.lumileds.com/uploads/542/DS134-pdf .

2016 (1)

2015 (1)

2013 (3)

2010 (2)

2008 (1)

2006 (1)

J. Bortz and N. Shatz, Proc. SPIE 6338, 633805 (2006).
[Crossref]

2002 (2)

H. Ries and J. Muschaweck, J. Opt. Soc. Am. A 19, 590 (2002).
[Crossref]

W. J. Cassarly and M. J. Hayford, Proc. SPIE 4832, 258 (2002).
[Crossref]

Bäuerle, A.

Benítez, P.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Bortz, J.

J. Bortz and N. Shatz, Proc. SPIE 6338, 633805 (2006).
[Crossref]

Bruneton, A.

Cassarly, W. J.

Ding, Y.

Du, K.

Feng, Z.

Fournier, F. R.

Gu, P.

Han, Y.

Han, Y. J.

Hayford, M. J.

W. J. Cassarly and M. J. Hayford, Proc. SPIE 4832, 258 (2002).
[Crossref]

Hu, S.

Hua, H.

Li, H.

Li, H. T.

Liu, P.

Liu, X.

Loosen, P.

Luo, Y.

Mei, T.

Miñano, J. C.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Muschaweck, J.

Ries, H.

Rolland, J. P.

Shatz, N.

J. Bortz and N. Shatz, Proc. SPIE 6338, 633805 (2006).
[Crossref]

Stollenwerk, J.

Wan, L.

Wang, K.

Wester, R.

Winston, R.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Wu, R.

Xu, L.

Zhang, Y.

Zheng, Z.

Zhu, N.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Design strategy of the proposed method.
Fig. 2.
Fig. 2. Diagram showing the relationship between I2D(β) and I3D(β).
Fig. 3.
Fig. 3. Demonstration of the 2D design. (a) and (b) Geometric relationships of the freeform surfaces and the light rays. (c) The distribution of the direction angles of the outgoing rays originating from A and B when the impinging point of the light ray on the exit profile moves from P0 (PN) to PM. The abscissa represents the polar angle of the impinging point from the coordinate origin. PN1 is the first point on the exit profile where the outgoing ray propagates along the direction β=βmax.
Fig. 4.
Fig. 4. Demonstration of the direct 3D design. (a) Calculation of the output intensity. (b) and (c) Geometric relationships of the freeform surfaces and the light rays in 3D geometry.
Fig. 5.
Fig. 5. Simulation verification: (a) and (c) the actual intensity distribution; (b) the lens profiles; and (d) the illuminance distribution.
Fig. 6.
Fig. 6. Experimental verification: (a) the experimental setup, (b) the illumination pattern, and (c) the measured illuminance distributions.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Φ1=4π20Rmax0ϕmaxrL(r,ϕ)sinϕcosϕdϕdr,
Φ1=2π0βmaxI3D(β)sinβdβ,
E(r)=K1I3D(β)cos3β,
I2D(β)=K2I3D(β)cosβ,
rms1=1Numk=1Num(βakβmaxβmax)2,
Ia(βi)=ΩiLi(x,y)cosβidxdy,
L(r,ϕ)=exp(2r29)+cos(ϕ2),{(r,ϕ)|0r1.5,0°ϕ90°}.
I3D(β)=K3cos3β,β[0°,40°],

Metrics