Abstract

Free-space optical communication holds the promise of high-throughput wireless communication channels for long distances as well as for short-range indoor applications. To fully benefit from the high data rates enabled by optical carriers, the light needs to be efficiently collected onto a fast photodetector, which requires complex pointing and tracking systems. Here, we show that fluorescent materials can be used to increase the active area of a photodiode by orders of magnitude while maintaining its short response time and increasing its field of view. Using commercially available materials, we demonstrate a detector with an active area of 126  cm2 achieving data rates up to 2.1 Gbps at an eye-safe intensity. We demonstrate a detector geometry with omnidirectional sensitivity and discuss the need for new materials tailored for communication applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InAlAs/InGaAs avalanche photodiode arrays for free space optical communication

Mike S. Ferraro, William R. Clark, William S. Rabinovich, Rita Mahon, James L. Murphy, Peter G. Goetz, Linda M. Thomas, Harris R. Burris, Christopher I. Moore, William D. Waters, Kenneth Vaccaro, and Brian D. Krejca
Appl. Opt. 54(31) F182-F188 (2015)

Wide field-of-view fluorescent antenna for visible light communications beyond the étendue limit

Pavlos P. Manousiadis, Sujan Rajbhandari, Rahmat Mulyawan, Dimali A. Vithanage, Hyunchae Chun, Grahame Faulkner, Dominic C. O’Brien, Graham A. Turnbull, Stephen Collins, and Ifor D.W. Samuel
Optica 3(7) 702-706 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Bouchet, H. Sizun, C. Boisrobert, F. de Fornel, and P. N. Favennec, Free-Space Optics: Propagation and Communication (Wiley, 2006).
  2. N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9, 822–826 (2015).
    [Crossref]
  3. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [Crossref]
  4. H. Hemmati, Deep Space Optical Communications (Wiley, 2006).
  5. H. Hemmati, Near-Earth Laser Communications (CRC Press, Taylor & Francis, 2009).
  6. http://fbnewsroomus.files.wordpress.com/2014/03/connecting-the-world-from-the-sky1.pdf .
  7. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
    [Crossref]
  8. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
    [Crossref]
  9. W. G. J. H. M. van Sark, L. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. De Mello Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators—a review of recent results,” Opt. Express 16, 21773–21792 (2008).
    [Crossref]
  10. Y. N. Kharzheev, “Scintillation counters in modern high energy physics experiments,” Phys. Part. Nucl. 46, 678–728 (2015).
    [Crossref]
  11. Z. Ghassemlooy, Optical Wireless Communications (CRC Press, 2013).
  12. S. Dimitrov and H. Haas, Principles of LED Light Communications (Cambridge University, 2015).
  13. NEPAPD=6.5  pW/Hz, corresponding to NEPLD=2.2  nW/Hz, note that the LD has an active area more than three orders of magnitude larger than that of the APD, therefore the NEP of both detectors cannot be directly compared.
  14. The data points are taken from the Hamamatsu, EO Tech, and Thorlabs catalogs.
  15. “Safety of laser products—Part 1: Equipment classification and requirements,” IEC 60825-1 (2014).
  16. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27, 189–204 (2009).
    [Crossref]
  17. B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightwave Technol. 30, 110–117 (2012).
    [Crossref]
  18. G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).
  19. The capture efficiency for a round fiber is given by ηc=(1/2)(1−(ncl/nco)), which amounts to 17% in each direction for a vacuum clad (ncl=1) polystyrene (nco=1.6) fiber.
  20. Saint Gobain Crystals, Scintillating Optical Fibers Brochure (2015).
  21. G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
    [Crossref]
  22. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
    [Crossref]

2015 (3)

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9, 822–826 (2015).
[Crossref]

Y. N. Kharzheev, “Scintillation counters in modern high energy physics experiments,” Phys. Part. Nucl. 46, 678–728 (2015).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

2013 (1)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

2012 (2)

B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightwave Technol. 30, 110–117 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
[Crossref]

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

Armstrong, J.

Barnham, L. W. J.

Bende, E. E.

Boisrobert, C.

O. Bouchet, H. Sizun, C. Boisrobert, F. de Fornel, and P. N. Favennec, Free-Space Optics: Propagation and Communication (Wiley, 2006).

Bose, R.

Bouchet, O.

O. Bouchet, H. Sizun, C. Boisrobert, F. de Fornel, and P. N. Favennec, Free-Space Optics: Propagation and Communication (Wiley, 2006).

Büchtemann, A.

Budel, T.

Burgers, A. R.

Caplan, D. O.

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
[Crossref]

Chatten, A. J.

Cvijetic, M.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).

de Fornel, F.

O. Bouchet, H. Sizun, C. Boisrobert, F. de Fornel, and P. N. Favennec, Free-Space Optics: Propagation and Communication (Wiley, 2006).

De Mello Donegá, C.

Dimitrov, S.

S. Dimitrov and H. Haas, Principles of LED Light Communications (Cambridge University, 2015).

Djordjevic, I. B.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Farhood, A.

Farrell, D. J.

Favennec, P. N.

O. Bouchet, H. Sizun, C. Boisrobert, F. de Fornel, and P. N. Favennec, Free-Space Optics: Propagation and Communication (Wiley, 2006).

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Ghassemlooy, Z.

Z. Ghassemlooy, Optical Wireless Communications (CRC Press, 2013).

Gómez Rivas, J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

Haas, H.

S. Dimitrov and H. Haas, Principles of LED Light Communications (Cambridge University, 2015).

Hemmati, H.

H. Hemmati, Deep Space Optical Communications (Wiley, 2006).

H. Hemmati, Near-Earth Laser Communications (CRC Press, Taylor & Francis, 2009).

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

Huang, H.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

Hunt, A.

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

Kachris, C.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).

Kahn, J. M.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9, 822–826 (2015).
[Crossref]

Kennedy, M.

Kharzheev, Y. N.

Y. N. Kharzheev, “Scintillation counters in modern high energy physics experiments,” Phys. Part. Nucl. 46, 678–728 (2015).
[Crossref]

Koole, R.

Kschischang, F. R.

Li, G.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9, 822–826 (2015).
[Crossref]

Li, X.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9, 822–826 (2015).
[Crossref]

Lodge, J.

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

McCormack, S. J.

Meijerink, A.

Meyer, A.

Meyer, T.

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

Quilitz, J.

Ren, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Ries, H.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Rodríguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

Sizun, H.

O. Bouchet, H. Sizun, C. Boisrobert, F. de Fornel, and P. N. Favennec, Free-Space Optics: Propagation and Communication (Wiley, 2006).

Slooff, L. H.

Smestad, G.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Smith, B. P.

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

Soudris, D.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).

Tomkos, I.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Tzimpragos, G.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).

van Sark, W. G. J. H. M.

Vanmaekelbergh, D.

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Willner, A. E.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Winston, R.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Yablonovitch, E.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Zhao, N.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9, 822–826 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Fiber. Commun. Rep. (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber. Commun. Rep. 4, 225–362 (2007).
[Crossref]

Light (1)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light 2, e66 (2013).
[Crossref]

Nat. Commun. (1)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref]

Nat. Photonics (2)

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nat. Photonics 9, 822–826 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Opt. Express (1)

Phys. Part. Nucl. (1)

Y. N. Kharzheev, “Scintillation counters in modern high energy physics experiments,” Phys. Part. Nucl. 46, 678–728 (2015).
[Crossref]

Sol. Energy Mater. (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Other (12)

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” in Communications Surveys and Tutorials (IEEE, 2014).

The capture efficiency for a round fiber is given by ηc=(1/2)(1−(ncl/nco)), which amounts to 17% in each direction for a vacuum clad (ncl=1) polystyrene (nco=1.6) fiber.

Saint Gobain Crystals, Scintillating Optical Fibers Brochure (2015).

Z. Ghassemlooy, Optical Wireless Communications (CRC Press, 2013).

S. Dimitrov and H. Haas, Principles of LED Light Communications (Cambridge University, 2015).

NEPAPD=6.5  pW/Hz, corresponding to NEPLD=2.2  nW/Hz, note that the LD has an active area more than three orders of magnitude larger than that of the APD, therefore the NEP of both detectors cannot be directly compared.

The data points are taken from the Hamamatsu, EO Tech, and Thorlabs catalogs.

“Safety of laser products—Part 1: Equipment classification and requirements,” IEC 60825-1 (2014).

H. Hemmati, Deep Space Optical Communications (Wiley, 2006).

H. Hemmati, Near-Earth Laser Communications (CRC Press, Taylor & Francis, 2009).

http://fbnewsroomus.files.wordpress.com/2014/03/connecting-the-world-from-the-sky1.pdf .

O. Bouchet, H. Sizun, C. Boisrobert, F. de Fornel, and P. N. Favennec, Free-Space Optics: Propagation and Communication (Wiley, 2006).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (841 KB)      Supplementary information for: A Luminescent Detector for Free-Space Optical Communication

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) LD concept: the LD consists of plastic optical fibers of 0.5    mm × 0.5    mm cross section, aligned in a planar array of width w , length L and thickness t . The optical fibers are doped with an organic dye and illuminated with a large optical beam (blue arrow). The dye molecules absorb and re-emit the light partly into guided modes of the fibers (green arrows, inset), and the guided light is subsequently concentrated using optical elements onto a small-area APD. The optical signal is modulated to carry a communication signal, which is detected by the photodiode. (b) Photograph of the LD as used for the measurements in Figs. 2 and 3 (see text). (c) Absorption (blue) and emission (green) spectra of the organic dye. The spectra are well separated, leading to negligible re-absorption of the scattered light.

Fig. 2.
Fig. 2.

(a) Bandwidth versus detector length. The blue solid circles are the measured 3 dB bandwidth for the detector in Fig. 1(b). The different points correspond to different illumination lengths. The solid square indicates the bare APD bandwidth [14] and the solid triangle the measured bandwidth of the detection electronics H ( ω ) (see Supplement 1). The red solid (respectively, blue dashed) line shows the 3 dB bandwidth obtained from Eq. (2) (assuming H ( ω ) = 1 ) for a spontaneous emission lifetime of τ e = 1.77    ns ( τ e = 11    ps ) corresponding to the material used throughout this paper (respectively, for possible Purcell enhanced materials; see text). The open circles indicate commercially available Si photodiodes from several commercial vendors [14]. For the photodiodes the detector length is taken as the square root of the active area. (b) Step response measured with a fast photodiode: the green (blue) dots show the optical response of the fluorescence (excitation) signal. The red line is a fit to an exponential decay with a time constant of τ e = 1.77    ns . (c) Frequency response of the material measured with a fast photodiode. The red line corresponds to a Lorentzian fit with a 3 dB bandwidth of f 3 dB = 1 / ( 2 π τ e ) = 91    MHz . The slow, first-order gain roll-off allows for the use of frequency-division multiplexing techniques over a spectrum much larger than f 3 dB .

Fig. 3.
Fig. 3.

OFDM implementation resulting in a total throughput of 2.109 Gbps and an unencoded BER of 0.96 × 10 3 . Left column: each subchannel has a width of 3.9  MHz; (a)–(d) show the SNR, BER, bit loading, and power loading for each subchannel, respectively. Right column: (e) QAM-256 and (f) BPSK (bottom) constellations of the 12th (50.78 MHz) and 98th (386.72 MHz) subchannels, respectively. The optimization procedure is performed by varying the bit and power loading to achieve a BER of 10 3 for each subchannel. The discontinuities in the gain near 150 MHz and 340 MHz for constant bit loading result from adjustments to flatten the BER.

Fig. 4.
Fig. 4.

(a) Experimental results for a LD with omnidirectional sensitivity: a bundle of fibers is arranged in a spherical geometry ( φ = 50    mm ) to have an identical cross section from all directions. The light coming out of the fiber bundle is detected by a photodiode with a matching diameter of φ = 5    mm . (b) Photograph of the detector under illumination. (c) and (d) Polar plots of the measured optical antenna gain for the polar and azimuthal angles, respectively. The blue data show the omnidirectional receiver, while the yellow show the response of the bare diode and the green show a lens with the same diameter as the omnidirectional receiver. The circular gridlines are in steps of 20 dB. The standard deviation in the antenna gain averaged over all angles is 1.9 and 0.2 dB for the polar and azimuthal angles, respectively. The depression in the antenna gain near θ = 180 ° is due to obstruction by the photodiode mount, which has a diameter of 25 mm. For θ = 0 , the antenna gain of the LD is 2.5 dB less than the bare diode, due to the losses arising from the LD, and 18 dB less than the D = 50    mm lens. For the azimuthal angle, the polar angle is set to θ = 90 ° and the bare photodiode and lens measurements have a gain equal to zero. The fields of view are 1.3 × 10 3 π , 0.33 π , and 3.9 π for the lens, bare photodiode, and LD, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G LD = A LD A PD η cnv η col .
R LD ( ω ) = sinc ( τ s ω / 2 ) ( 1 + τ e 2 ω 2 ) H ( ω ) ,
G LD = L t n CPC 2 n co 2 n cl 2 η cnv ,

Metrics