Abstract

Coherent wave splitting is crucial in interferometers. Normally, the waves after this splitting are of the same type. But recent progress in interactions between atom and light has led to the coherent conversion of photon to atomic excitation. This makes it possible to split an incoming light wave into a coherent superposition state of atom and light and paves the way for an interferometer made of different types of waves. Here we report on a Rabi-like coherent-superposition oscillation observed between an atom and light in a Raman process. We construct a new kind of hybrid interferometer based on the atom–light coherent superposition state. Interference fringes are observed in both the optical output intensity and atomic output in terms of the atomic spin wave strength when we scan either or both of the optical and atomic phases. Such a hybrid interferometer can be used to interrogate atomic states by optical detection and will find its applications in precision measurement and quantum control of atoms and light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ramsey interferometry with an atom laser

D. Döring, J. E. Debs, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close
Opt. Express 17(23) 20661-20668 (2009)

Effects of losses in the atom-light hybrid SU(1,1) interferometer

Zhao-Dan Chen, Chun-Hua Yuan, Hong-Mei Ma, Dong Li, L. Q. Chen, Z. Y. Ou, and Weiping Zhang
Opt. Express 24(16) 17766-17778 (2016)

Observation of Ramsey fringes in an atomic cell with buffer gas

A. S. Zibrov, I. Novikova, and A. B. Matsko
Opt. Lett. 26(17) 1311-1313 (2001)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [Crossref]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref]
  3. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  4. A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
    [Crossref]
  5. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
    [Crossref]
  6. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [Crossref]
  7. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
    [Crossref]
  8. G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
    [Crossref]
  9. M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
    [Crossref]
  10. J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
    [Crossref]
  11. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
    [Crossref]
  12. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
    [Crossref]
  13. K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
    [Crossref]
  14. G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
    [Crossref]
  15. O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
    [Crossref]
  16. K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
    [Crossref]
  17. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).
  18. N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
    [Crossref]
  19. M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
    [Crossref]
  20. L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
    [Crossref]
  21. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
    [Crossref]
  22. B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
    [Crossref]
  23. B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
    [Crossref]
  24. R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
    [Crossref]
  25. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref]
  26. K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
    [Crossref]
  27. Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
    [Crossref]
  28. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
    [Crossref]
  29. B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
    [Crossref]
  30. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
    [Crossref]
  31. A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
    [Crossref]
  32. S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
    [Crossref]
  33. M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
    [Crossref]
  34. S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
    [Crossref]
  35. J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
    [Crossref]
  36. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
    [Crossref]
  37. M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
    [Crossref]
  38. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
    [Crossref]
  39. For two-level atoms, the interaction Hamiltonian can also be written in the form of Eq. (1) by changing a^W to b^1 and S^a to b^2, where b^1 and b^2 are the annihilation operators for the two atomic states.
  40. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University, 1981).
  41. B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
    [Crossref]

2015 (3)

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

2014 (1)

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

2013 (1)

2012 (2)

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

2011 (3)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

2010 (3)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

2009 (1)

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

2008 (4)

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[Crossref]

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

2007 (1)

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

2002 (1)

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

2001 (3)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

1994 (2)

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

1993 (1)

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

1992 (1)

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

1991 (1)

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

1989 (2)

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

1987 (1)

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

1986 (2)

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

1980 (1)

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

1974 (1)

M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
[Crossref]

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

1950 (1)

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Akamatsu, D.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Akiba, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Arikawa, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Bian, C.

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Buchler, B. C.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Burke, J. H. T.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Campbell, G.

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Campbell, G. T.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Campos, R. A.

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Champion, T. F. M.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Chen, B.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

Chen, L. Q.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Chen, S.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

Chu, S.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Cronin, A. D.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Deissler, B.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Dirac, P. A. M.

P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University, 1981).

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).

England, D. G.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Everett, J. L.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Friberg, S. R.

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

Furusawa, A.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Grangier, P.

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

Guéry-Odelin, D.

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

Guo, J.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

Hager, J.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Hétet, G.

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

Honda, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Hong, C. K.

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

Hosseini, M.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Hughes, K. J.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Jin, X.-M.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Kasevich, M.

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Kimble, H. J.

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

Klauder, J. R.

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

Kolthammer, W. S.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Kozuma, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Lam, P. K.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Langford, N. K.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Lee, K. C.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Levenson, M. D.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Loy, M. M. T.

M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
[Crossref]

Lukin, M. D.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

Machida, S.

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

Mair, A.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Mandel, L.

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

McCall, S. L.

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

Michelberger, P.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Michelberger, P. S.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

Nagatsuka, S.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Nunn, J.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Ou, Z. Y.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[Crossref]

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

Pereira, S. F.

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

Phillips, D. F.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Pinel, O.

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Poizat, J. Ph.

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

Polzik, E. S.

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Porta, A. L.

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

Pritchard, D. E.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Qiu, C.

Ramsey, N. F.

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Raymer, M. G.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Reid, M.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Reim, K. F.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Sackett, C. A.

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Saleh, B. E. A.

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Schmiedmayer, J.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Shelby, R. M.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Slusher, R. E.

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

Sorensen, A. S.

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

Sparkes, B. M.

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Surmacz, K.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Tanimura, T.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Teich, M. C.

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Thorne, K. S.

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

Vorontsov, Y. I.

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Waldermann, F. C.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Walls, D. F.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

Walmsley, I. A.

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Walsworth, R. L.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, Z.

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

Weitz, M.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

Yamamoto, Y.

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

Yokoi, Y.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

Young, B. C.

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

Yuan, C.-H.

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Yurke, B.

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

Zhang, G.-W.

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Zhang, K.

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

Zhang, W.

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

B. Chen, K. Zhang, C. Bian, C. Qiu, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Efficient Raman frequency conversion by coherent feedback at low light intensity,” Opt. Express 21, 10490–10495 (2013).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Nat. Commun. (1)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Nat. Photonics (1)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Nat. Phys. (1)

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Nature (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

New J. Phys. (2)

G. Hétet and D. Guéry-Odelin, “Spin wave diffraction control and read-out with a quantum memory for light,” New J. Phys. 17, 073003 (2015).
[Crossref]

G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Time- and frequency-domain polariton interference,” New J. Phys. 14, 033022 (2012).
[Crossref]

Opt. Commun. (1)

Z. Y. Ou, C. K. Hong, and L. Mandel, “Relation between input and output states for a beam splitter,” Opt. Commun. 63, 118–122 (1987).
[Crossref]

Opt. Express (1)

Phys. Rev. (2)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[Crossref]

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695–699 (1950).
[Crossref]

Phys. Rev. A (7)

K. Zhang, J. Guo, C.-H. Yuan, L. Q. Chen, C. Bian, B. Chen, Z. Y. Ou, and W. Zhang, “Mirrorless parametric oscillation in an atomic Raman process,” Phys. Rev. A 89, 063826 (2014).
[Crossref]

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, “Mapping broadband single-photon wavepackets into an atomic memory,” Phys. Rev. A 75, 011401(R) (2007).
[Crossref]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[Crossref]

B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement of the ac Stark shift with a guided matter-wave interferometer,” Phys. Rev. A 77, 031604(R) (2008).
[Crossref]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[Crossref]

B. Yurke, S. L. McCall, and J. R. Klauder, “SU(2) and SU(1, 1) interferometers,” Phys. Rev. A 33, 4033–4054 (1986).
[Crossref]

R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989).
[Crossref]

Phys. Rev. Lett. (16)

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Atom–light hybrid interferometer,” Phys. Rev. Lett. 115, 043602 (2015).
[Crossref]

A. L. Porta, R. E. Slusher, and B. Yurke, “Back-action evading measurements of an optical field using parametric down conversion,” Phys. Rev. Lett. 62, 28–31 (1989).
[Crossref]

S. F. Pereira, Z. Y. Ou, and H. J. Kimble, “Backaction evading measurements for quantum nondemolition detection and quantum optical tapping,” Phys. Rev. Lett. 72, 214–217 (1994).
[Crossref]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, “Quantum nondemolition detection of optical quadrature amplitudes,” Phys. Rev. Lett. 57, 2473–2476 (1986).
[Crossref]

S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton,” Phys. Rev. Lett. 69, 3165–3168 (1992).
[Crossref]

J. Ph. Poizat and P. Grangier, “Experimental realization of a quantum optical tap,” Phys. Rev. Lett. 70, 271–274 (1993).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

M. Weitz, B. C. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994).
[Crossref]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).
[Crossref]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

M. M. T. Loy, “Observation of population inversion by optical adiabatic rapid passage,” Phys. Rev. Lett. 32, 814–817 (1974).
[Crossref]

L. Q. Chen, G.-W. Zhang, C. Bian, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Observation of the Rabi oscillation of light driven by an atomic spin wave,” Phys. Rev. Lett. 105, 133603 (2010).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K. Langford, and I. A. Walmsley, “Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout,” Phys. Rev. Lett. 108, 263602 (2012).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[Crossref]

Rev. Mod. Phys. (2)

K. Hammerer, A. S. Sorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[Crossref]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Sci. Rep. (1)

O. Pinel, J. L. Everett, M. Hosseini, G. T. Campbell, B. C. Buchler, and P. K. Lam, “A mirrorless spinwave resonator,” Sci. Rep. 5, 17633 (2015).
[Crossref]

Science (1)

V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980).
[Crossref]

Other (3)

For two-level atoms, the interaction Hamiltonian can also be written in the form of Eq. (1) by changing a^W to b^1 and S^a to b^2, where b^1 and b^2 are the annihilation operators for the two atomic states.

P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University, 1981).

L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of atom–light superposition oscillation. (a) Raman process for three-wave coupling of two optical fields (write a ^ W and Stokes A S ) and an atomic spin wave ( S ^ a ). (b) Atomic energy levels for coupling optical fields. | g and | m : two ground states | 5 2 S 1 / 2 , F = 1,2 ; | e 1 and | e 2 : two excited states | 5 2 P 1 / 2 , F = 2 and | 5 2 P 3 / 2 . OP: optical pumping field resonant on the | m | e 2 transition. (c) Experimental arrangement for observing Rabi-like superposition oscillation between atom and light driven by a strong Stokes field with the atoms having an initial spin wave. The initial spin wave is prepared by W 0 & S 0 (see Appendix A for detail). PBS: polarized beam splitter. (d1) and (d2) Timing sequences for the experiment with an initial spin wave S ^ a in (d1) and a write field a ^ W in (d2) as the only input field.

Fig. 2.
Fig. 2.

Results of Rabi-like superposition oscillation between atom and light. (a) The output write field observed in time when the atomic spin wave has an initial value but no write field injection and (b) the corresponding oscillation frequency as a function of the amplitude of the driving Stokes field. (c) The observed output write field when the write field has an input but the atoms are all in the ground state and (d) the corresponding Rabi oscillation frequency as a function of the amplitude of the driving Stokes field. The period of the oscillation is obtained from the first two peaks. The black arrows in (a) and (c) represent the start times of the strong Stokes pulse.

Fig. 3.
Fig. 3.

Atom–light hybrid interferometer. (a) Experimental setup and (b) atomic energy levels with frequencies of optical fields for the formation of an atom–light hybrid interferometer. HWP: half-wave plate; F-R: Faraday rotator; PZT: piezoelectric transducer; SMF: single-mode fiber; W 1 , W 2 , W 3 : write fields; S 1 , S 2 , S 3 : strong Stokes fields. BS1: the first splitting process to split the initial spin wave S a 0 to coherent superposition of write field W 1 and spin wave S a 1 . BS2: the second beam splitting process to mix W 1 and S a 1 and output W 2 and S a 2 . The angle between W 0 and S 1 beams is 0.3 deg. S 1 and S 2 are spatially overlapped. The lasers S 1 ( S 2 ) and S 3 come from the same semiconductor laser and are chopped by two acoustic optical modulators.

Fig. 4.
Fig. 4.

Interference fringes of atom–light hybrid interferometer. Observed interference fringes at the output write field (blue squares) and for the final atomic spin wave (green dots) as the optical phase is scanned via a ramp voltage on the PZT.

Fig. 5.
Fig. 5.

AC Stark effect on interference output. Interference fringes at the output write field with (blue) and without (red) the atomic phase shift induced by the AC Stark effect. Green lines are the ramp voltage on the PZT for phase scan and the dotted lines are for the probe light intensity (scales are not drawn for both lines).

Fig. 6.
Fig. 6.

Atomic phase shift. (a) The induced phase shift as a function of the intensity of the inducing light field (probe). (b) The inverse of the slopes of the linear fits from (a) as a function of the detuning frequency of the probe field.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ^ R = i η ( a ^ W a ^ S S ^ a a ^ W a ^ S S ^ a ) ,
H ^ BS AL = 1 2 i ( Ω * a ^ w S ^ a Ω a ^ W S ^ a ) .
a ^ W out = a ^ W in cos ( θ / 2 ) + S ^ a in sin ( θ / 2 ) , S ^ a out = S ^ a in cos ( θ / 2 ) a ^ W in sin ( θ / 2 ) ,
Δ Ω AC = 1 2 c ε 0 2 | μ g e | 2 I / Δ ,

Metrics