Abstract

Single-photon sources are of paramount importance in quantum communication, quantum computation, and quantum metrology. In particular, there is great interest in realizing scalable solid-state platforms that can emit triggered photons on demand to achieve scalable nanophotonic networks. We report on a visible-spectrum single-photon emitter in 4H silicon carbide (SiC). The emitter is photostable at room and low temperatures, enabling photon counts per second in excess of 2×106 from unpatterned bulk SiC. It exists in two orthogonally polarized states, which have parallel absorption and emission dipole orientations. Low-temperature measurements reveal a narrow zero phonon line (linewidth <0.1  nm) that accounts for >30% of the total photoluminescence spectrum.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-band single-photon emission in the near infrared for quantum key distribution

E Wu, Vincent Jacques, Heping Zeng, Philippe Grangier, François Treussart, and Jean-François Roch
Opt. Express 14(3) 1296-1303 (2006)

Photophysics of single silicon vacancy centers in diamond: implications for single photon emission

Elke Neu, Mario Agio, and Christoph Becher
Opt. Express 20(18) 19956-19971 (2012)

Coupling of silicon-vacancy centers to a single crystal diamond cavity

Jonathan C. Lee, Igor Aharonovich, Andrew P. Magyar, Fabian Rol, and Evelyn L. Hu
Opt. Express 20(8) 8891-8897 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection (Academic, 2013).
  2. C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications (Wiley, 2010).
  3. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
    [Crossref]
  4. I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
    [Crossref]
  5. A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
    [Crossref]
  6. O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
    [Crossref]
  7. R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
    [Crossref]
  8. B. Naydenov and F. Jelezko, “Single-color centers in diamond as single-photon sources and quantum sensors,” in Advanced Photon Counting: Applications, Methods, Instrumentation, P. Kapusta, M. Wahl, and R. Erdmann, eds., Vol. 15 of Springer Series on Fluorescence (Springer, 2015), pp. 303–318.
  9. V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, “Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC,” Phys. Rev. Lett. 108, 226402 (2012).
    [Crossref]
  10. J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
    [Crossref]
  11. L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects,” Phys. Today 67(10), 38–43 (2014).
    [Crossref]
  12. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
    [Crossref]
  13. J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
    [Crossref]
  14. D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
    [Crossref]
  15. S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
    [Crossref]
  16. H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
    [Crossref]
  17. M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
    [Crossref]
  18. F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
    [Crossref]
  19. V. S. Vainer and V. A. Il’in, “Electron spin resonance of exchange-coupled vacancy pairs in hexagonal silicon carbide,” Sov. Phys. Solid State 23, 2126–2133 (1981).
  20. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
    [Crossref]
  21. D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
    [Crossref]
  22. P. T. B. Shaffer, “Refractive index, dispersion, and birefringence of silicon carbide polytypes,” Appl. Opt. 10, 1034–1036 (1971).
    [Crossref]
  23. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
    [Crossref]
  24. J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
    [Crossref]
  25. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
    [Crossref]
  26. R. Loudon, The Quantum Theory of Light (Oxford University, 1983).
  27. S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
    [Crossref]
  28. M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
    [Crossref]
  29. I. Aharonovich, “Chromium single-photon emitters in diamond fabricated by ion implantation,” Phys. Rev. B 81, 121201 (2010).
    [Crossref]
  30. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  31. T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
    [Crossref]
  32. E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
    [Crossref]
  33. I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
    [Crossref]
  34. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
    [Crossref]
  35. E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
    [Crossref]
  36. V. Hizhnyakov and P. Reineker, “Optical dephasing in defect-rich crystals,” J. Chem. Phys. 111, 8131–8135 (1999).
    [Crossref]
  37. V. Hizhnyakov, H. Kaasik, and I. Sildos, “Zero-phonon lines: the effect of a strong softening of elastic springs in the excited state,” Phys. Stat. Sol. B 234, 644–653 (2002).
    [Crossref]
  38. K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
    [Crossref]
  39. J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
    [Crossref]
  40. Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
    [Crossref]
  41. A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).
  42. S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
    [Crossref]
  43. A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
    [Crossref]
  44. L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
    [Crossref]
  45. A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
    [Crossref]
  46. M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, “Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC,” Jpn. J. Appl. Phys. 43, 4114–4118 (2004).
    [Crossref]
  47. P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
    [Crossref]
  48. C. Haberstroh, R. Helbig, and R. A. Stein, “Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R),” J. Appl. Phys. 76, 509–513 (1994).
    [Crossref]
  49. F. Carlsson, “DII PL intensity dependence on dose, implantation temperature and implanted species in 4H- and 6H-SiC,” Mater. Sci. Forum 433–436, 345–348 (2003).
    [Crossref]
  50. L. Torpo, S. Pöykkö, and R. M. Nieminen, “Antisites in silicon carbide,” Phys. Rev. B 57, 6243–6246 (1998).
    [Crossref]
  51. S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
    [Crossref]
  52. “Cree silicon carbide substrates and epitaxy,” 2013, http://www.cree.com/∼/media/Files/Cree/Chips%20and%20Material/Data%20Sheets%20Material/MATCATALOG.pdf .

2015 (7)

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

2014 (6)

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

2013 (3)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
[Crossref]

2012 (4)

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref]

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, “Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC,” Phys. Rev. Lett. 108, 226402 (2012).
[Crossref]

2011 (4)

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[Crossref]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

2010 (2)

I. Aharonovich, “Chromium single-photon emitters in diamond fabricated by ion implantation,” Phys. Rev. B 81, 121201 (2010).
[Crossref]

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

2009 (3)

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

2008 (1)

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

2007 (1)

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

2006 (1)

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

2005 (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

2004 (2)

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, “Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC,” Jpn. J. Appl. Phys. 43, 4114–4118 (2004).
[Crossref]

2003 (2)

F. Carlsson, “DII PL intensity dependence on dose, implantation temperature and implanted species in 4H- and 6H-SiC,” Mater. Sci. Forum 433–436, 345–348 (2003).
[Crossref]

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

2002 (1)

V. Hizhnyakov, H. Kaasik, and I. Sildos, “Zero-phonon lines: the effect of a strong softening of elastic springs in the excited state,” Phys. Stat. Sol. B 234, 644–653 (2002).
[Crossref]

1999 (2)

J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
[Crossref]

V. Hizhnyakov and P. Reineker, “Optical dephasing in defect-rich crystals,” J. Chem. Phys. 111, 8131–8135 (1999).
[Crossref]

1998 (2)

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[Crossref]

L. Torpo, S. Pöykkö, and R. M. Nieminen, “Antisites in silicon carbide,” Phys. Rev. B 57, 6243–6246 (1998).
[Crossref]

1996 (1)

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

1994 (1)

C. Haberstroh, R. Helbig, and R. A. Stein, “Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R),” J. Appl. Phys. 76, 509–513 (1994).
[Crossref]

1981 (1)

V. S. Vainer and V. A. Il’in, “Electron spin resonance of exchange-coupled vacancy pairs in hexagonal silicon carbide,” Sov. Phys. Solid State 23, 2126–2133 (1981).

1971 (1)

Agio, M.

Aharonovich, I.

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

I. Aharonovich, “Chromium single-photon emitters in diamond fabricated by ion implantation,” Phys. Rev. B 81, 121201 (2010).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

Aichele, T.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Andrich, P.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

Astakhov, G. V.

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Awschalom, D. D.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Babinec, T. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Bai, S.

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

Banholzer, M. J.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[Crossref]

Baranov, P. G.

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, “Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC,” Phys. Rev. Lett. 108, 226402 (2012).
[Crossref]

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

Barclay, P. E.

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

Barth, M.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Beausoleil, R. G.

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

Becher, C.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref]

Benson, O.

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
[Crossref]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Berthel, M.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Bienfang, J. C.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection (Academic, 2013).

Binder, J. M.

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

Bodrog, Z.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

Booker, I.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Borovykh, I. V.

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

Buckley, B. B.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Bulu, I.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Bundakova, A. P.

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

Burek, M. J.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Burton, J. C.

J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
[Crossref]

Calusine, G.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Carlsson, F.

F. Carlsson, “DII PL intensity dependence on dose, implantation temperature and implanted species in 4H- and 6H-SiC,” Mater. Sci. Forum 433–436, 345–348 (2003).
[Crossref]

Casady, J. B.

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

Castelletto, S.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

Chen, E. H.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Childress, L.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Choy, J. T.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Choyke, W. J.

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

Christle, D. J.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

Chu, Y.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Dantelle, G.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

de Leon, N.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

de Walle, C. G. V.

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Denisenko, A.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Devaty, R. P.

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

Dietrich, A.

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Dolde, F.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Drezet, A.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Dyakonov, V.

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Englund, D.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Eom, D. I.

M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, “Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC,” Jpn. J. Appl. Phys. 43, 4114–4118 (2004).
[Crossref]

Evans, R.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Fairchild, B. A.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Falk, A. L.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

Fan, J.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection (Academic, 2013).

Fattal, D.

C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications (Wiley, 2010).

Fedder, H.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Feng, Z. C.

J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
[Crossref]

Ferguson, I. T.

J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
[Crossref]

Fischer, M.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

Fu, K.-M. C.

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

Fuchs, F.

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Gacoin, T.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Gädeke, F.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[Crossref]

Gali, A.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Gerhardt, I.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Gibson, B. C.

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

Greentree, A. D.

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Gsell, S.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

Gunjishima, I.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Haberstroh, C.

C. Haberstroh, R. Helbig, and R. A. Stein, “Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R),” J. Appl. Phys. 76, 509–513 (1994).
[Crossref]

Harrison, J. P.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Hauschild, M.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

Hausmann, B.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Hausmann, B. J. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Helbig, R.

C. Haberstroh, R. Helbig, and R. A. Stein, “Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R),” J. Appl. Phys. 76, 509–513 (1994).
[Crossref]

Hemmer, P. R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

Hepp, C.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

Heremans, F. J.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Hizhnyakov, V.

V. Hizhnyakov, H. Kaasik, and I. Sildos, “Zero-phonon lines: the effect of a strong softening of elastic springs in the excited state,” Phys. Stat. Sol. B 234, 644–653 (2002).
[Crossref]

V. Hizhnyakov and P. Reineker, “Optical dephasing in defect-rich crystals,” J. Chem. Phys. 111, 8131–8135 (1999).
[Crossref]

Hollenberg, L. C.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Hossain, F. M.

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Huant, S.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Il’in, V. A.

V. S. Vainer and V. A. Il’in, “Electron spin resonance of exchange-coupled vacancy pairs in hexagonal silicon carbide,” Sov. Phys. Solid State 23, 2126–2133 (1981).

Isoya, J.

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

Ito, T.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Ivády, V.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Iwamoto, N.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

Jahnke, K. D.

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

Jamali, M.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Janotti, A.

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Janzen, E.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Janzén, E.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

Jelezko, F.

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

B. Naydenov and F. Jelezko, “Single-color centers in diamond as single-photon sources and quantum sensors,” in Advanced Photon Counting: Applications, Methods, Instrumentation, P. Kapusta, M. Wahl, and R. Erdmann, eds., Vol. 15 of Springer Series on Fluorescence (Springer, 2015), pp. 303–318.

Jeon, I. S.

M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, “Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC,” Jpn. J. Appl. Phys. 43, 4114–4118 (2004).
[Crossref]

Johnson, B.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

Johnson, B. C.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Johnson, R. W.

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

Jonsson, P.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[Crossref]

Kaasik, H.

V. Hizhnyakov, H. Kaasik, and I. Sildos, “Zero-phonon lines: the effect of a strong softening of elastic springs in the excited state,” Phys. Stat. Sol. B 234, 644–653 (2002).
[Crossref]

Kaiser, U.

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

Karaveli, S.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Karg, M.

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

Karle, T.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

Karle, T. J.

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

Kewes, G.

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

Khan, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Kim, H. J.

M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, “Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC,” Jpn. J. Appl. Phys. 43, 4114–4118 (2004).
[Crossref]

Kitson, S. C.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[Crossref]

Klimov, P. V.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

Koehl, W. F.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Kolesov, R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

Kondo, H.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Kraus, H.

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Lee, S.-Y.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Li, L.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Lohrmann, A.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

Loncar, M.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Long, F. H.

J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
[Crossref]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University, 1983).

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Lukin, M.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

MacMillan, M. F.

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

Maletinsky, P.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Markham, M.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Markham, M. L.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

McCallum, J.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

Meijer, J.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
[Crossref]

Migdall, A.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection (Academic, 2013).

Mollet, O.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Momenzadeh, S. A.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Morfa, A.

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

Morfa, A. J.

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

Mouradian, S. L.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Mulvaney, P.

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

Nakamura, D.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Naydenov, B.

B. Naydenov and F. Jelezko, “Single-color centers in diamond as single-photon sources and quantum sensors,” in Advanced Photon Counting: Applications, Methods, Instrumentation, P. Kapusta, M. Wahl, and R. Erdmann, eds., Vol. 15 of Springer Series on Fluorescence (Springer, 2015), pp. 303–318.

Neitzke, O.

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

Neu, E.

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012).
[Crossref]

Nieminen, R. M.

L. Torpo, S. Pöykkö, and R. M. Nieminen, “Antisites in silicon carbide,” Phys. Rev. B 57, 6243–6246 (1998).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Ohshima, T.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Okamoto, A.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Onda, S.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Orlinskii, S. B.

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Paik, S.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Park, H.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Pezzagna, S.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
[Crossref]

Pflaum, J.

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

Polyakov, S. V.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection (Academic, 2013).

Pöykkö, S.

L. Torpo, S. Pöykkö, and R. M. Nieminen, “Antisites in silicon carbide,” Phys. Rev. B 57, 6243–6246 (1998).
[Crossref]

Prawer, S.

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Proskuryakov, I. I.

V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, “Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC,” Phys. Rev. Lett. 108, 226402 (2012).
[Crossref]

Rarity, J. G.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[Crossref]

Reineker, P.

V. Hizhnyakov and P. Reineker, “Optical dephasing in defect-rich crystals,” J. Chem. Phys. 111, 8131–8135 (1999).
[Crossref]

Rendler, T.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Reuter, R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

Riedel, D.

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Rogalla, D.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
[Crossref]

Rogers, L. J.

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

Sadzak, N.

J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
[Crossref]

Santori, C.

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications (Wiley, 2010).

Schell, A. W.

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
[Crossref]

Schietinger, S.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Schmidt, J.

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

Schreck, M.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

Schröder, T.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
[Crossref]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[Crossref]

Sellars, M. J.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Shaffer, P. T. B.

Shields, B.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Sildos, I.

V. Hizhnyakov, H. Kaasik, and I. Sildos, “Zero-phonon lines: the effect of a strong softening of elastic springs in the excited state,” Phys. Stat. Sol. B 234, 644–653 (2002).
[Crossref]

Simin, D.

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

Simpson, D. A.

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

Soltamov, V. A.

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, “Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC,” Phys. Rev. Lett. 108, 226402 (2012).
[Crossref]

Soltamova, A. A.

V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, “Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC,” Phys. Rev. Lett. 108, 226402 (2012).
[Crossref]

Son, N. T.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Sperlich, A.

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Stacey, A.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

Stavrias, N.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Stein, R. A.

C. Haberstroh, R. Helbig, and R. A. Stein, “Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R),” J. Appl. Phys. 76, 509–513 (1994).
[Crossref]

Steinmüller-Nethl, D.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

Stender, B.

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

Sternschulte, H.

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

Stöhr, R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

Sun, L.

J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
[Crossref]

Takatori, K.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Tapster, P. R.

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[Crossref]

Teraji, T.

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

Togan, E.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Tomljenovic-Hanic, S.

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

Torpo, L.

L. Torpo, S. Pöykkö, and R. M. Nieminen, “Antisites in silicon carbide,” Phys. Rev. B 57, 6243–6246 (1998).
[Crossref]

Trupke, M.

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

Twitchen, D.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Twitchen, D. J.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Ul Hassan, J.

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

Um, M. Y.

M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, “Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC,” Jpn. J. Appl. Phys. 43, 4114–4118 (2004).
[Crossref]

Umeda, T.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Vainer, V. S.

V. S. Vainer and V. A. Il’in, “Electron spin resonance of exchange-coupled vacancy pairs in hexagonal silicon carbide,” Sov. Phys. Solid State 23, 2126–2133 (1981).

Varley, J. B.

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Väth, S.

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Wagner, G.

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

Walsworth, R.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Weber, J. R.

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Widmann, M.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Wildanger, D.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
[Crossref]

Wolters, J.

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
[Crossref]

Wrachtrup, J.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

Xia, K.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

Yacobi, A.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Yacoby, A.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Yamaguchi, S.

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

Yamamoto, Y.

C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications (Wiley, 2010).

Yang, L.-P.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Yang, S.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Zaitsev, A.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
[Crossref]

Zappe, A.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

Zhao, N.

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Zheng, J.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Zibrov, A.

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

Zondervan, R.

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

Adv. Opt. Mater. (1)

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Bai, R. P. Devaty, W. J. Choyke, U. Kaiser, G. Wagner, and M. F. MacMillan, “Determination of the electric field in 4h/3c/4h-sic quantum wells due to spontaneous polarization in the 4H SiC matrix,” Appl. Phys. Lett. 83, 3171–3173 (2003).
[Crossref]

J. Appl. Phys. (1)

C. Haberstroh, R. Helbig, and R. A. Stein, “Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R),” J. Appl. Phys. 76, 509–513 (1994).
[Crossref]

J. Chem. Phys. (1)

V. Hizhnyakov and P. Reineker, “Optical dephasing in defect-rich crystals,” J. Chem. Phys. 111, 8131–8135 (1999).
[Crossref]

J. Exp. Theor. Phys. Lett. (1)

P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, “Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects,” J. Exp. Theor. Phys. Lett. 86, 202–206 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Y. Um, I. S. Jeon, D. I. Eom, and H. J. Kim, “Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC,” Jpn. J. Appl. Phys. 43, 4114–4118 (2004).
[Crossref]

Mater. Sci. Forum (1)

F. Carlsson, “DII PL intensity dependence on dose, implantation temperature and implanted species in 4H- and 6H-SiC,” Mater. Sci. Forum 433–436, 345–348 (2003).
[Crossref]

Mater. Today (1)

A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, “Diamond integrated quantum photonics,” Mater. Today 11(9), 22–31 (2008).
[Crossref]

Nano Lett. (6)

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15, 1493–1497 (2015).
[Crossref]

Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov, A. Yacoby, D. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M. Lukin, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett. 14, 1982–1986 (2014).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

A. J. Morfa, B. C. Gibson, M. Karg, T. J. Karle, A. D. Greentree, P. Mulvaney, and S. Tomljenovic-Hanic, “Single-photon emission and quantum characterization of zinc oxide defects,” Nano Lett. 12, 949–954 (2012).
[Crossref]

O. Neitzke, A. Morfa, J. Wolters, A. W. Schell, G. Kewes, and O. Benson, “Investigation of line width narrowing and spectral jumps of single stable defect centers in ZnO at cryogenic temperature,” Nano Lett. 15, 3024–3029 (2015).
[Crossref]

Nat. Commun. (3)

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun. 3, 1029 (2012).
[Crossref]

F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G. V. Astakhov, “Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide,” Nat. Commun. 6, 7578 (2015).
[Crossref]

A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. Karle, A. Gali, S. Prawer, J. McCallum, and B. Johnson, “Single-photon emitting diode in silicon carbide,” Nat. Commun. 6, 7783 (2015).
[Crossref]

Nat. Mater. (3)

D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Ul Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, “Isolated electron spins in silicon carbide with millisecond coherence times,” Nat. Mater. 14, 160–163 (2015).
[Crossref]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, and J. Wrachtrup, “Coherent control of single spins in silicon carbide at room temperature,” Nat. Mater. 14, 164–168 (2015).
[Crossref]

Nat. Photon. (1)

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacobi, and M. Loncar, “Enhanced single-photon emission drom a diamond-silver aperture,” Nat. Photon. 5, 738–743 (2011).
[Crossref]

Nat. Phys. (1)

H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, “Room-temperature quantum microwave emitters based on spin defects in silicon carbide,” Nat. Phys. 10, 157–162 (2014).
[Crossref]

Nature (2)

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature 430, 1009–1012 (2004).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

New J. Phys. (4)

E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low-temperature investigations of single silicon vacancy colour centers in diamond,” New J. Phys. 15, 043005 (2013).
[Crossref]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011).
[Crossref]

A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji, J. Isoya, L. J. Rogers, and F. Jelezko, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys. 16, 113019 (2014).

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks,” New J. Phys. 13, 035024 (2011).
[Crossref]

Opt. Express (1)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Phys. Rev. A (1)

S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998).
[Crossref]

Phys. Rev. B (5)

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

I. Aharonovich, “Chromium single-photon emitters in diamond fabricated by ion implantation,” Phys. Rev. B 81, 121201 (2010).
[Crossref]

J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59, 7282–7284 (1999).
[Crossref]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

L. Torpo, S. Pöykkö, and R. M. Nieminen, “Antisites in silicon carbide,” Phys. Rev. B 57, 6243–6246 (1998).
[Crossref]

Phys. Rev. Lett. (3)

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 103, 256404 (2009).
[Crossref]

J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O. Benson, “Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry,” Phys. Rev. Lett. 110, 027401 (2013).
[Crossref]

V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, “Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC,” Phys. Rev. Lett. 108, 226402 (2012).
[Crossref]

Phys. Stat. Sol. B (1)

V. Hizhnyakov, H. Kaasik, and I. Sildos, “Zero-phonon lines: the effect of a strong softening of elastic springs in the excited state,” Phys. Stat. Sol. B 234, 644–653 (2002).
[Crossref]

Phys. Today (1)

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects,” Phys. Today 67(10), 38–43 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (1)

J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. de Walle, and D. D. Awschalom, “Quantum computing with defects,” Proc. Natl. Acad. Sci. 107, 8513–8518 (2010).
[Crossref]

Rep. Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Solid-State Electron. (1)

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

Sov. Phys. Solid State (1)

V. S. Vainer and V. A. Il’in, “Electron spin resonance of exchange-coupled vacancy pairs in hexagonal silicon carbide,” Sov. Phys. Solid State 23, 2126–2133 (1981).

Other (6)

R. Loudon, The Quantum Theory of Light (Oxford University, 1983).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection (Academic, 2013).

C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications (Wiley, 2010).

B. Naydenov and F. Jelezko, “Single-color centers in diamond as single-photon sources and quantum sensors,” in Advanced Photon Counting: Applications, Methods, Instrumentation, P. Kapusta, M. Wahl, and R. Erdmann, eds., Vol. 15 of Springer Series on Fluorescence (Springer, 2015), pp. 303–318.

“Cree silicon carbide substrates and epitaxy,” 2013, http://www.cree.com/∼/media/Files/Cree/Chips%20and%20Material/Data%20Sheets%20Material/MATCATALOG.pdf .

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1839 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Three-dimensional 4H-SiC crystal lattice [blue, carbon (C); yellow, silicon (Si)] in a hexagonal geometry with one green highlighted rectangular prism containing one two-dimensional layer in its vertical diagonal plane. This plane is shown on the right-hand side to illustrate the one-dimensional lines A, B, and C. The characteristic sequential bilayers in 4H-SiC are ABCB. (b) The confocal fluorescence scan of the top surface of 4H-SiC shows a high density of bright emitters (green circles), which were separately confirmed to have single-photon emission characteristics (see Fig. 2). (c) Spectra from the three characteristic 4H-SiC emitters (blue, E 1 ; black, E 2 [yellow in (b)]; red, E 3 ) indicated in (b), representing the PL distribution over an energy range of 100 meV at room temperature. The green spectrum, PL of 4H-SiC, shows the characteristic first-order longitudinal optical Raman mode (labeled on the spectrum with a star) and the second-order Raman modes (labeled with two stars).

Fig. 2.
Fig. 2.

(a), (b) Second-order autocorrelation histograms of (a)  E 1 and (b)  E 3 ; (c), (d) power-dependent second-order autocorrelation histograms of (c)  E 1 and (d)  E 3 ; (e), (f) reciprocal values of fitting parameters (e)  τ 1 and (f)  τ 2 for the second-order autocorrelation fit [Eq. (2)]. The power-dependent reciprocal values of τ 1 and τ 2 are subsequently linearly fitted (green) and reflect the decay rates of the excited and metastable states at the crossover of the extrapolated linear fit with the reciprocal time axis. (g) Power-dependent fitting parameter α accounting for the nonradiative transitions via the metastable state in comparison with the value calculated in Supplement 1 (green). Error bars in (e)–(g) represent the standard deviation calculated from the covariance matrix of each fitting routine.

Fig. 3.
Fig. 3.

(a) Jablonski diagram of a three-level system with ground state ( | g ), excited state ( | e ), and metastable state ( | m ); (b) lifetime measurements fitted with a single exponential decay function; (c) polar plot of PL as a function of excitation laser polarization; (d) PL intensity measurements of the emitters evaluated at discrete excitation power to achieve maximal emission, fitted with Eq. (3) (green). Blue and red squares show the acquired background during PL measurements based on second-order autocorrelation histograms, with the corresponding axis on the right-hand side. Both emitters show g 2 ( 0 ) < 0.5 up to an excitation power of 1  mW.

Fig. 4.
Fig. 4.

(a) PL spectrum of E 1 (blue), E 2 (black), and E 3 (red) in an environment at 18 K. Inset: magnified spectral range containing ZPL ( E 1 , 581.2 nm; E 2 , 588.9 nm; E 3 , 601.5 nm) and first phonon modes, highlighted with green Gaussian fits. (b) Histogram of ZPLs with the corresponding polarization of various room-temperature emitters at different wavelengths recorded at cryogenic temperatures. (c) Plot of the linewidth broadening with increasing temperature (T) of the dominant peak at 581.4 nm ( E 1 , blue squares). A free fit ( T x ) yields x = 3.02 , indicating a T 3 dependence (solid green line). For comparison, the dashed black line shows the case for T 5 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( p ˙ g p ˙ e p ˙ m ) = ( γ g e γ e g γ m g γ g e γ e g γ e m 0 0 γ e m γ m g ) ( p g p e p m ) .
g 2 ( τ ) 1 ( 1 + α ) exp ( τ τ 1 ) + α exp ( τ τ 2 ) ,
R COL ( P opt ) = R INF P opt P SAT + P opt + a B G P opt + a D .
DWF = I ZPL I TOT .

Metrics