Abstract

Fourier-transform spectroscopy is an indispensable tool for analyzing chemical samples in scientific research as well as the chemical and pharmaceutical industries. Recently, its measurement speed, sensitivity, and precision have been shown to be significantly enhanced by using dual-frequency combs. Moreover, recent demonstrations of inducing nonlinear effects with ultrashort pulses have enriched the utility of dual-comb spectroscopy. However, wide acceptance of this technique is hindered by its requirement for two frequency combs and active stabilization of the combs. Here, we overcome this predicament with a Kerr-lens mode-locked bidirectional ring femtosecond-pulse laser that generates two broadband frequency combs with slightly different pulse repetition rates and a tunable yet highly stable rate difference. Since these combs are produced by one and the same laser cavity, their relative coherence stays passively stable without the need for active stabilization. To show its utility, we demonstrate broadband dual-comb spectroscopy with the single laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-coherence ultra-broadband bidirectional dual-comb fiber laser

Yoshiaki Nakajima, Yuya Hata, and Kaoru Minoshima
Opt. Express 27(5) 5931-5944 (2019)

Picometer-resolution dual-comb spectroscopy with a free-running fiber laser

Xin Zhao, Guoqing Hu, Bofeng Zhao, Cui Li, Yingling Pan, Ya Liu, Takeshi Yasui, and Zheng Zheng
Opt. Express 24(19) 21833-21845 (2016)

Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique

Akiko Nishiyama, Satoru Yoshida, Takuya Hariki, Yoshiaki Nakajima, and Kaoru Minoshima
Opt. Express 25(25) 31730-31738 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectroscopy (Wiley, 2007).
  2. Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
    [Crossref]
  3. N. Y. Topsøe, “Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy,” Science 265, 1217–1219 (1994).
    [Crossref]
  4. D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
    [Crossref]
  5. M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
    [Crossref]
  6. L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
    [Crossref]
  7. D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
    [Crossref]
  8. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequeny-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref]
  9. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
    [Crossref]
  10. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  11. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
    [Crossref]
  12. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
    [Crossref]
  13. T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
    [Crossref]
  14. Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
    [Crossref]
  15. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref]
  16. N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.1.
  17. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref]
  18. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref]
  19. Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
    [Crossref]
  20. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
    [Crossref]
  21. A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
    [Crossref]
  22. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
    [Crossref]
  23. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
    [Crossref]
  24. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  25. T. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011–1013 (2006).
    [Crossref]
  26. M. Piché and F. Salin, “Self-mode locking of solid-state lasers without apertures,” Opt. Lett. 18, 1041–1043 (1993).
    [Crossref]
  27. M. J. Bohn and J.-C. Diels, “Bidirectional Kerr-lens mode-locked femtosecond ring laser,” Opt. Commun. 141, 53–58 (1997).
    [Crossref]
  28. H. A. Haus and E. P. Ippen, “Group velocity of solitons,” Opt. Lett. 26, 1654–1656 (2001).
    [Crossref]
  29. M. Y. Sander, E. P. Ippen, and F. X. Kärtner, “Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti:sapphire lasers,” Opt. Express 18, 4948–4960 (2010).
    [Crossref]
  30. Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrafast pulse generation by a birefringent mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.20.
  31. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” http://arxiv.org/abs/1602.07788 .
  32. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23, 5521–5531 (2015).
    [Crossref]
  33. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23, 10111–10116 (2015).
    [Crossref]
  34. U. Morgner, F. X. Kärtner, S. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheurer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [Crossref]
  35. A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6, 97–100 (2012).
    [Crossref]
  36. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
    [Crossref]
  37. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19, 18501–18509 (2011).
    [Crossref]
  38. S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878 (2001).
    [Crossref]

2016 (2)

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

2015 (2)

2014 (6)

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
[Crossref]

2013 (2)

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (2)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

M. Y. Sander, E. P. Ippen, and F. X. Kärtner, “Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti:sapphire lasers,” Opt. Express 18, 4948–4960 (2010).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

2007 (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

2006 (2)

T. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011–1013 (2006).
[Crossref]

Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
[Crossref]

2005 (2)

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[Crossref]

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

2004 (1)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

2001 (2)

H. A. Haus and E. P. Ippen, “Group velocity of solitons,” Opt. Lett. 26, 1654–1656 (2001).
[Crossref]

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

1999 (1)

1997 (2)

M. J. Bohn and J.-C. Diels, “Bidirectional Kerr-lens mode-locked femtosecond ring laser,” Opt. Commun. 141, 53–58 (1997).
[Crossref]

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
[Crossref]

1994 (1)

N. Y. Topsøe, “Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy,” Science 265, 1217–1219 (1994).
[Crossref]

1993 (1)

1991 (1)

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

Angelow, G.

Baker, M. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

T. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011–1013 (2006).
[Crossref]

Bassan, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Baumann, E.

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Benedick, A. J.

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6, 97–100 (2012).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Bhargava, R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Bohn, M. J.

M. J. Bohn and J.-C. Diels, “Bidirectional Kerr-lens mode-locked femtosecond ring laser,” Opt. Commun. 141, 53–58 (1997).
[Crossref]

Brehm, M.

Butler, H. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Chang, M. T.

Chen, Y.

Chen, Y. F.

Cho, S.

Coddington, I.

Cristescu, S. M.

Cromer, C.

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectroscopy (Wiley, 2007).

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Deschênes, J.-D.

Diddams, S. A.

Diels, J.-C.

M. J. Bohn and J.-C. Diels, “Bidirectional Kerr-lens mode-locked femtosecond ring laser,” Opt. Commun. 141, 53–58 (1997).
[Crossref]

Dorling, K. M.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Faist, J.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Fernandez, D. C.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Fielden, P. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Fogarty, S. W.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Fortier, T.

Fujimoto, J. G.

Fullwood, N. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Gardiner, T.

Gardner, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Genest, J.

Giorgetta, F. R.

Gohle, C.

Golling, M.

Gong, Z.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrafast pulse generation by a birefringent mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.20.

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectroscopy (Wiley, 2007).

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Harren, F. J. M.

Haus, H. A.

Helm, D.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

Hewitt, S. M.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Heys, K. A.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Hipke, A.

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequeny-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hougen, J. T.

Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
[Crossref]

Hovannysyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Hu, G.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrafast pulse generation by a birefringent mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.20.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Hughes, C.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

Ippen, E. P.

Ito, I.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.1.

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Jin, Y.

Kalasinsky, V. F.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
[Crossref]

Kärtner, F. X.

Keilmann, F.

Keller, U.

Kidder, L. H.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
[Crossref]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Klenner, A.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.1.

Kofler, J.

Kourogi, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Kuse, N.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.1.

Labischinski, H.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

Lasch, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Lee, S. J.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Lee, Y.-P.

Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
[Crossref]

Lees, R. M.

Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
[Crossref]

Levin, I. W.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
[Crossref]

Lewis, E. N.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
[Crossref]

Liang, H. C.

Link, S. M.

Liu, J.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrafast pulse generation by a birefringent mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.20.

Liu, T.-A.

Luke, J. L.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
[Crossref]

Mandon, J.

Mangold, M.

Martin, F. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Martin-Hirsch, P. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Meek, S. A.

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Morgner, U.

Naumann, D.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

Newbury, N.

Newbury, N. R.

Obinaju, B.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Ohtsu, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.1.

Petron, G.

Piché, M.

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

Potvin, S.

Reid, D. T.

Rieker, G. B.

Roy, J.

Salin, F.

Sander, M. Y.

Scheurer, V.

Schliesser, A.

Sinclair, L. C.

Sockalingum, G. D.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Strong, R. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Su, K. W.

Sulé-Suso, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Swann, W.

Swann, W. C.

Sweeney, C.

Tans, P. P.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Tilma, B. W.

Topsøe, N. Y.

N. Y. Topsøe, “Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy,” Science 265, 1217–1219 (1994).
[Crossref]

Trevisan, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Tschudi, T.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Udem, T. H.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

van der Weide, D. W.

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Walsh, M. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Widiyatmoko, B.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Wood, B. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Wu, Y.-J.

Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
[Crossref]

Xu, L.-H.

Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
[Crossref]

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Zaugg, C. A.

Zhang, Z.

Zhao, X.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrafast pulse generation by a birefringent mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.20.

Zheng, Z.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrafast pulse generation by a birefringent mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.20.

Zolot, A. M.

Jpn. J. Appl. Phys. (1)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878 (2001).
[Crossref]

Nat. Biotechnol. (1)

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23, 469–474 (2005).
[Crossref]

Nat. Commun. (2)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Nat. Med. (1)

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3, 235–237 (1997).
[Crossref]

Nat. Photonics (3)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. H. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6, 97–100 (2012).
[Crossref]

Nat. Protoc. (1)

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9, 1771–1791 (2014).
[Crossref]

Nature (3)

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Commun. (1)

M. J. Bohn and J.-C. Diels, “Bidirectional Kerr-lens mode-locked femtosecond ring laser,” Opt. Commun. 141, 53–58 (1997).
[Crossref]

Opt. Express (6)

Opt. Lett. (8)

Optica (2)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Physica Rev. A (1)

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Physica Rev. A 90, 011805(R) (2014).
[Crossref]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Science (2)

Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, and J. T. Hougen, “Internal rotation and spin conversion of CH3OH in solid para-hydrogen,” Science 311, 365–368 (2006).
[Crossref]

N. Y. Topsøe, “Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy,” Science 265, 1217–1219 (1994).
[Crossref]

Other (4)

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectroscopy (Wiley, 2007).

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.1.

Z. Gong, X. Zhao, G. Hu, J. Liu, and Z. Zheng, “Polarization multiplexed, dual-frequency ultrafast pulse generation by a birefringent mode-locked fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh2A.20.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” http://arxiv.org/abs/1602.07788 .

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (518 KB)      Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the bidirectional dual-comb ring laser and dual-comb spectroscopy system. The laser is based on a four-mirror bowtie ring cavity with a Ti:sapphire (Ti:S) crystal pumped by a diode-pumped solid-state laser at 532 nm. All the cavity mirrors, including two concave mirrors (M1, M2) and a convex mirror (M3), and an output coupler (OC) are dielectric coated to provide negative group-delay dispersion for intra-cavity pulse compression. The ring cavity generates ultrashort pulse trains by means of soft-aperture Kerr-lens mode locking in either the uni-directional or the bi-directional lasing mode. In the case of bidirectional mode locking, the repetition rates of the two outputs can be made identical or slightly different, depending on the cavity alignment. The two outputs of the laser (Comb A, Comb B), spatially combined by a beam splitter, pass through the sample and are incident onto the photodetector. The low pass-filtered photodetector signal is digitized and Fourier transformed for dual-comb spectroscopy.
Fig. 2.
Fig. 2. Basic performance of the bidirectional dual-comb ring laser. (a) Spectra of the two laser outputs (shown in blue and red) measured by a grating-based spectrometer. (b) Temporal behavior of the pulse repetition rates of the two combs (shown in blue and red) and the difference between them (shown in green). The insets show the zoomed difference in pulse repetition rate over 10 s. (c) Tunability of the difference in pulse repetition rates between the two laser outputs as a function of the displacement of the Ti:sapphire crystal, the cavity mirror M2, and the focusing lens for the pump laser with respect to the initial positions where the laser has been mode locked. The positive directions of the displacements ( x -axis) in the figure are defined as the forward, forward, and backward directions of the pump laser’s propagation for the crystal, mirror, and lens, respectively.
Fig. 3.
Fig. 3. Relative coherence between the two combs. (a) Beat note between a pair of comb lines from the two combs measured in 1 ms, showing high relative coherence between them. (b) Frequency of the beat note sampled at every 5 min over 60 min, showing high long-term stability in the relative coherence between the two combs.
Fig. 4.
Fig. 4. Dual-comb spectroscopy with the bidirectional dual-comb ring laser. (a) Continuously measured signal that includes multiple interferograms. The interval between the consecutive interferograms is 3.7 ms. The inset shows one of the interferograms. (b) Consecutive broadband dual-comb spectra that are obtained by Fourier transforming each interferogram over 20 μs around each burst point.
Fig. 5.
Fig. 5. Dual-comb absorption spectroscopy of a Nd : YVO 4 crystal with the bidirectional dual-comb ring laser. The dual-comb absorption spectrum of a Nd : YVO 4 crystal was obtained in the transmission mode (shown in red) with a spectral resolution of 93 GHz and an acquisition duration of 67 μs over a spectral range of 18 THz (corresponding to 40 nm) centered at 367 THz (corresponding to 817 nm). The spectrum agrees well with the spectrum of the same sample obtained by a conventional grating-based optical spectrum analyzer (black).

Metrics