Abstract

Silicon-plasmonics enables the fabrication of active photonic circuits in CMOS technology with unprecedented operation speed and integration density. Regarding applications in chip-level optical interconnects, fast and efficient plasmonic photodetectors with ultrasmall footprints are of special interest. A particularly promising approach to silicon-plasmonic photodetection is based on internal photoemission (IPE), which exploits intrinsic absorption in plasmonic waveguides at the metal–dielectric interface. However, while IPE plasmonic photodetectors have already been demonstrated, their performance is still far below that of conventional high-speed photodiodes. In this paper, we demonstrate a novel class of IPE devices with performance parameters comparable to those of state-of-the-art photodiodes while maintaining footprints below 1  μm2. The structures are based on asymmetric metal–semiconductor–metal waveguides with a width of less than 75 nm. We measure record-high sensitivities of up to 0.12 A/W at a wavelength of 1550 nm. The detectors exhibit opto-electronic bandwidths of at least 40 GHz. We demonstrate reception of on–off keying data at rates of 40 Gbit/s.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime

Boris Desiatov, Ilya Goykhman, Noa Mazurski, Joseph Shappir, Jacob B. Khurgin, and Uriel Levy
Optica 2(4) 335-338 (2015)

Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm

Maurizio Casalino, Giuseppe Coppola, Mario Iodice, Ivo Rendina, and Luigi Sirleto
Opt. Express 20(11) 12599-12609 (2012)

A 40 Gbit/s optical link on a 300-mm silicon platform

D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Bœuf, and L. Vivien
Opt. Express 22(6) 6674-6679 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  2. M. Bohr, “14  nm process technology: opening new horizons” (2014), http://www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf , retrieved March 15, 2016.
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104, 143112 (2014).
    [Crossref]
  5. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
    [Crossref]
  6. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
    [Crossref]
  7. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [Crossref]
  8. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
    [Crossref]
  9. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
    [Crossref]
  10. J. S. Helman and F. Sánchez-Sinencio, “Theory of internal photoemission,” Phys. Rev. B 7, 3702–3706 (1973).
    [Crossref]
  11. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref]
  12. K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
    [Crossref]
  13. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
    [Crossref]
  14. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18, 8505–8514 (2010).
    [Crossref]
  15. M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21, 28072–28082 (2013).
    [Crossref]
  16. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20, 1396–1398 (2008).
    [Crossref]
  17. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
    [Crossref]
  18. C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
    [Crossref]
  19. L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.
  20. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
    [Crossref]
  21. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988).
    [Crossref]
  22. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
    [Crossref]
  23. R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London Ser. A 119, 173–181 (1928).
  24. T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
    [Crossref]
  25. A. M. Cowley, “Titanium-silicon Schottky barrier diodes,” Solid-State Electron. 13, 403–414 (1970).
    [Crossref]
  26. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  27. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
    [Crossref]
  28. H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
    [Crossref]
  29. J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
    [Crossref]
  30. R. W. Boyd, “Optically induced damage and multiphoton absorption,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 12, pp. 543–560.
  31. W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).
  32. Z. Xuezhe, P. Koka, M. O. McCracken, H. Schwetman, J. G. Mitchell, Y. Jin, R. Ho, K. Raj, and A. V. Krishnamoorthy, “Energy-efficient error control for tightly coupled systems using silicon photonic interconnects,” J. Opt. Commun. Netw. 3, A21–A31 (2011).
    [Crossref]

2015 (2)

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

2014 (3)

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104, 143112 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

2013 (3)

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21, 28072–28082 (2013).
[Crossref]

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

2012 (1)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

2011 (3)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Z. Xuezhe, P. Koka, M. O. McCracken, H. Schwetman, J. G. Mitchell, Y. Jin, R. Ho, K. Raj, and A. V. Krishnamoorthy, “Energy-efficient error control for tightly coupled systems using silicon photonic interconnects,” J. Opt. Commun. Netw. 3, A21–A31 (2011).
[Crossref]

2010 (2)

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18, 8505–8514 (2010).
[Crossref]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (2)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20, 1396–1398 (2008).
[Crossref]

2006 (1)

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

2005 (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

1997 (1)

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

1993 (1)

T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
[Crossref]

1988 (1)

1973 (1)

J. S. Helman and F. Sánchez-Sinencio, “Theory of internal photoemission,” Phys. Rev. B 7, 3702–3706 (1973).
[Crossref]

1970 (1)

A. M. Cowley, “Titanium-silicon Schottky barrier diodes,” Solid-State Electron. 13, 403–414 (1970).
[Crossref]

1931 (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
[Crossref]

1928 (1)

R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London Ser. A 119, 173–181 (1928).

Akbari, A.

Alexander, R. W.

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Baudot, C.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Becker, J.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Beling, C. D.

T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
[Crossref]

Bell, R. J.

Berini, P.

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104, 143112 (2014).
[Crossref]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18, 8505–8514 (2010).
[Crossref]

Boeuf, F.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Boyd, R. W.

R. W. Boyd, “Optically induced damage and multiphoton absorption,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 12, pp. 543–560.

Casalino, M.

Cassan, E.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Chen, H.-L.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Chen, K.-H.

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

Chen, T. P.

T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
[Crossref]

Chen, W.-T.

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

Choi, C.-H.

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Coppola, G.

Cowley, A. M.

A. M. Cowley, “Titanium-silicon Schottky barrier diodes,” Solid-State Electron. 13, 403–414 (1970).
[Crossref]

Crozat, P.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Dalton, L. R.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Desiatov, B.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Dreschmann, M.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Fédéli, J.-M.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Fowler, R. H.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
[Crossref]

R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London Ser. A 119, 173–181 (1928).

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Fung, S.

T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
[Crossref]

Goykhman, I.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Hartmann, J.-M.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Helman, J. S.

J. S. Helman and F. Sánchez-Sinencio, “Theory of internal photoemission,” Phys. Rev. B 7, 3702–3706 (1973).
[Crossref]

Heni, W.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Ho, R.

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Huebner, M.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Im, S. G.

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Iodice, M.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Jeong, J.-M.

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Jin, Y.

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Kang, Y.

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Khurgin, J. B.

Kim, B. J.

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Koenig, S.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Koka, P.

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Krishnamoorthy, A. V.

Kwong, D. L.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20, 1396–1398 (2008).
[Crossref]

Lai, Y.-S.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Lee, B.

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Lee, C.-S.

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Lee, M.-C. M.

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

Lee, T. C.

T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
[Crossref]

Leuthold, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Levy, U.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Lin, K.-T.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Ling, C. C.

T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
[Crossref]

Liu, H.-D.

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

Lo, G. Q.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20, 1396–1398 (2008).
[Crossref]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Marris-Morini, D.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Mazurski, N.

McCracken, M. O.

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Meyer, J.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Mitchell, J. G.

Mousavi, S. S.

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104, 143112 (2014).
[Crossref]

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Na, N.

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

Nebendahl, B.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Newquist, L. A.

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Nordheim, L.

R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London Ser. A 119, 173–181 (1928).

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Ogawa, S.

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Oh, M. S.

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Ordal, M. A.

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Petek, H.

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

Querry, M. R.

Raj, K.

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Rendina, I.

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Sánchez-Sinencio, F.

J. S. Helman and F. Sánchez-Sinencio, “Theory of internal photoemission,” Phys. Rev. B 7, 3702–3706 (1973).
[Crossref]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Schmogrow, R.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Schwetman, H.

Shappir, J.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Sirleto, L.

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Stöhr, A.

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104, 143112 (2014).
[Crossref]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

Tait, R. N.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Tseng, C.-K.

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Virot, L.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Vivien, L.

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Winter, M.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Xuezhe, Z.

Yu, C.-C.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Zhu, S.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20, 1396–1398 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104, 143112 (2014).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20, 1396–1398 (2008).
[Crossref]

J. Opt. Commun. Netw. (1)

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[Crossref]

Langmuir (1)

J.-M. Jeong, M. S. Oh, B. J. Kim, C.-H. Choi, B. Lee, C.-S. Lee, and S. G. Im, “Reliable synthesis of monodisperse microparticles: prevention of oxygen diffusion and organic solvents using conformal polymeric coating onto poly (dimethylsiloxane) micromold,” Langmuir 29, 3474–3481 (2013).
[Crossref]

Nano Lett. (1)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Nat. Commun. (1)

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Nat. Photonics (3)

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
[Crossref]

Phys. Rev. B (2)

J. S. Helman and F. Sánchez-Sinencio, “Theory of internal photoemission,” Phys. Rev. B 7, 3702–3706 (1973).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. R. Soc. London Ser. A (1)

R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London Ser. A 119, 173–181 (1928).

Prog. Surf. Sci. (1)

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Sci. Rep. (1)

C.-K. Tseng, W.-T. Chen, K.-H. Chen, H.-D. Liu, Y. Kang, N. Na, and M.-C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25  Gb/s high-speed optical interconnects,” Sci. Rep. 3, 3225 (2013).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Solid-State Electron. (2)

T. P. Chen, T. C. Lee, C. C. Ling, C. D. Beling, and S. Fung, “Current transport and its effect on the determination of the Schottky-barrier height in a typical system: gold on silicon,” Solid-State Electron. 36, 949–954 (1993).
[Crossref]

A. M. Cowley, “Titanium-silicon Schottky barrier diodes,” Solid-State Electron. 13, 403–414 (1970).
[Crossref]

Other (6)

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

M. Bohr, “14  nm process technology: opening new horizons” (2014), http://www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf , retrieved March 15, 2016.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Vivien, L. Virot, D. Marris-Morini, J.-M. Hartmann, P. Crozat, E. Cassan, C. Baudot, F. Boeuf, and J.-M. Fédéli, “40  Gbit/s germanium waveguide photodiode,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OM2J.3.

R. W. Boyd, “Optically induced damage and multiphoton absorption,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 12, pp. 543–560.

W. Freude, R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, and J. Leuthold, “Quality metrics for optical signals: eye diagram, Q-factor, OSNR, EVM and BER,” in 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2012).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1714 KB)      Simulation, Device Fabrication and Experimental Characterization

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Energy band diagram of an Au–Si–Ti junction. Energy W , lateral direction y as in Fig. 2(b). The silicon layer of width w constitutes a potential-barrier-impeding charge transfer between the metals. The energy of the Schottky barrier heights are Φ Au and Φ Ti . W C denotes the silicon conduction band edge, and W V is the valence band edge. The junction is capable of guiding light in the form of SPPs, which are absorbed mainly at the Si–Ti interface. Absorbed SPPs create hot electrons with a maximum energy of ħ ω above the Fermi energy W F . (a) Thermal equilibrium, no bias voltage. The built-in potential ϕ bi leads to a constant negative electric field along the y axis inside the silicon layer. Hot carriers created by light absorption at the Si–Ti interface are impeded to cross the barrier by the built-in field. (b) Nonequilibrium under applied forward bias voltage U , counted positive in the direction A u Ti . The voltage drops across the silicon layer. For U > ϕ ib , the barrier width w is reduced to an effective width w , thereby increasing the emission probability across the barrier. The section A–A corresponds to associated sections in the device schematics of Fig. 2.

Fig. 2.
Fig. 2.

Detector structure and operation principle. (a) Light is coupled from a silicon photonic waveguide to the Au–Si–Ti junction, which is biased with the external voltage U . Absorbed SPPs generate hot electrons, which are transferred between the adjacent metals. The section A–A indicates the regions in which the band diagrams in Fig. 1 are drawn. (b) Schematic of the detector junction with length L . The silicon core is sandwiched between two metal layers (Au, Ti) of thickness t . The silicon core has a height of 300 nm and is wider at the base than at the top as a consequence of the fabrication process. The core width at the top is denoted as w . The SiO 2 hard mask on top of the silicon and its gold cover result from the fabrication process and are shown only in the back half of the structure. (c) Cleaved facet of fabricated Au–Si–Ti junction. Due to cleaving, the gold cover on the thermally grown SiO 2 hard mask has partially detached. (d) Top view of a plasmonic detector. The red arrow denotes the light propagation direction. The Au–Si–Ti junction is hidden below the hard mask and the top metallization.

Fig. 3.
Fig. 3.

Photodetector DC characterization for PIPEDs #1 and #2 ( L = 5    μm and width w = 75    nm ). (a) Total current I for an incident laser power of P = 310    μW and dark current I d as a function of the external (bias) voltage U . For voltages U > ϕ ib , the photocurrent is positive, corresponding to carrier injection from the titanium. The photocurrent grows exponentially beyond U = 1    V . The insets show a semi-logarithmic plot of dark and photocurrent, as well as the corresponding sensitivity S = I p / P , exceeding S > 0.12    AW 1 for a bias voltage of U = 3.25    V . The dashed line in the left inset separates the dark current into regions of different exponential growth. As this particular behavior is not present in the photocurrent, we exclude the presence of avalanche multiplication. (b) Total device current I versus laser power P for various bias voltages. The laser power P is measured at the input of the photonic-to-plasmonic mode converter. The filled circles denote the measurements; the solid lines represent linear fits to the measured data.

Fig. 4.
Fig. 4.

Polarization dependence of photocurrent and simulation of optical fields for PIPED #3 with w = 150    nm . (a) Photocurrent I p as a function of angle Θ between the direction of the linear polarization at the fiber input and the slow axis of the PM fiber with forward bias (blue) and reverse bias (red). The surface normal of the photonic chip is aligned in parallel to the slow axis of the PM fiber. The angles Θ v = 0 ° , 180°, 360° correspond to a dominant vertical electric field component E y , and Θ h = 90 ° , 270° correspond to a dominant horizontal electric field component E x . The insets illustrate the respective electric fields in the photonic waveguide. (b) Electric field magnitude at the input of the silicon core, indicated by z = 0 in Fig. 2(a), after coupling from a photonic mode with a dominantly horizontal electric field component. The light is localized in the silicon core. (c) Electric field magnitude at the input of the silicon core ( z = 0 ) after coupling from a photonic mode with a dominantly vertical electric field component. Light is localized in the SiO 2 hard mask. Both field distributions deposit the optical power efficiently in the titanium; see Table 2.

Fig. 5.
Fig. 5.

Frequency-dependent photodetector sensitivity and data reception experiment. (a) Electro-optic transfer function of sensitivity, normalized to the sensitivity at 40 MHz. The dips at 4, 7, and 30 GHz originate from reflections at the RF probe. The measurement has been done with the longest and widest device, PIPED #4. (b) Eye diagram measured with PIPED #2 for OOK at 40 Gbit/s with a measured quality factor of Q = 4.1 and an estimated BER of 2 × 10 5 . The bias voltage is U = 1    V , and the optical power at the input of the detector is P = 1.6    mW . The DC part of the device current has been removed.

Tables (2)

Tables Icon

Table 1. Properties of PIPED Samples #1–#4 (N.A.: Not Available)

Tables Icon

Table 2. Fraction of Absorbed Optical Power in the Photonic-to-Plasmonic Mode Converter (conv.), in the Detector Core, and Total Absorbed Power Per Metal Contact Relative to the Total Optical Input Power P 0

Metrics