Abstract

Visible light communications (VLC) is an important emerging field aiming to use optical communications to supplement Wi-Fi. This will greatly increase the available bandwidth so that demands for ever-higher data rates can be met. In this vision, solid-state lighting will provide illumination while being modulated to transmit data. An important obstacle to realizing this vision are receivers, which need to be inexpensive, sensitive, fast, and have a large field of view (FoV). One approach to increasing the sensitivity of a VLC receiver is to increase the area of the receiver’s photodetector, but this makes them expensive and slow. An alternative approach is to use optical elements to concentrate light, but conservation of étendue in these elements limits their FoV. In this paper, we demonstrate novel antennas that overcome these limitations, giving fast receivers with large collection areas and large FoV. Our results exceed the limit of étendue, giving an enhancement of light collection by a factor of 12, with FoV semi-angle of 60°, and we show a threefold increase in data rate.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Nanopatterned luminescent concentrators for visible light communications

Yurong Dong, Meng Shi, Xilu Yang, Pan Zeng, Junyi Gong, Sunming Zheng, Mengjie Zhang, Rongqing Liang, Qiongrong Ou, Nan Chi, and Shuyu Zhang
Opt. Express 25(18) 21926-21934 (2017)

Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK

Zhijian Lu, Pengfei Tian, Hong Chen, Izak Baranowski, Houqiang Fu, Xuanqi Huang, Jossue Montes, Youyou Fan, Hongyi Wang, Xiaoyan Liu, Ran Liu, and Yuji Zhao
Opt. Express 25(15) 17971-17981 (2017)

Continuous zoom antenna for mobile visible light communication

Xuebin Zhang, Yi Tang, Lu Cui, and Tingzhu Bai
Appl. Opt. 54(32) 9606-9612 (2015)

References

  • View by:
  • |
  • |
  • |

  1. O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: state-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
    [Crossref]
  2. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).
    [Crossref]
  3. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
    [Crossref]
  4. D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
    [Crossref]
  5. H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
    [Crossref]
  6. J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in 33rd European Conference and Exhibition of Optical Communication (VDE Verlag, 2007), post-deadline paper.
  7. H. Chun, S. Rajbhandari, G. Faulkner, and D. O’Brien, “Effectiveness of blue-filtering in WLED based indoor visible light communication,” in 3rd International Workshop in Optical Wireless Communications (IWOW) (2014), pp. 60–64.
  8. See, for example, “Si APD, S12023 series,” etc. (Hamamatsu, 2014).
  9. W. T. Welford and R. Winston, Optics of Nonimaging Concentrators: Light and Solar Energy (Academic, 1978).
  10. H. Ries, “Thermodynamic limitations of the concentration of electromagnetic radiation,” J. Opt. Soc. Am. 72, 380–385 (1982).
    [Crossref]
  11. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
    [Crossref]
  12. R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic, 2005).
  13. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators: a review of recent results,” Opt. Express 16, 21773–21792 (2008).
    [Crossref]
  14. M. G. Debije and P. P. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).
  15. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
    [Crossref]
  16. J. S. Batchelder, A. H. Zewai, and T. Cole, “Luminescent solar concentrators. 1: theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979).
    [Crossref]
  17. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981).
    [Crossref]
  18. P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
    [Crossref]
  19. H. Sträter, S. Knabe, T. J. J. Meyer, and G. H. Bauer, “Spectrally and angle-resolved emission of thin film fluorescence collectors,” Prog. Photovoltaics 21, 554–560 (2013).
  20. S. Collins, D. C. O’Brien, and A. Watt, “High gain, wide field of view concentrator for optical communications,” Opt. Lett. 39, 1756–1759 (2014).
    [Crossref]
  21. D. O’Brien, R. Turnbull, M. H. Le, G. Faulkner, O. Bouchet, P. Porcon, M. El Tabach, E. Gueutier, M. Wolf, L. Grobe, and L. Jianhui, “High-speed optical wireless demonstrators: conclusions and future directions,” J. Lightwave Technol. 30, 2181–2187 (2012).
    [Crossref]
  22. “Forward error correction for high bit-rate DWDM submarine systems,” , 2004.
  23. http://dx.doi.org/10.17630/d6ae5a33-c93d-4e83-86e5-fcb39ff07350 .

2015 (2)

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: state-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).
[Crossref]

2014 (2)

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

S. Collins, D. C. O’Brien, and A. Watt, “High gain, wide field of view concentrator for optical communications,” Opt. Lett. 39, 1756–1759 (2014).
[Crossref]

2013 (1)

H. Sträter, S. Knabe, T. J. J. Meyer, and G. H. Bauer, “Spectrally and angle-resolved emission of thin film fluorescence collectors,” Prog. Photovoltaics 21, 554–560 (2013).

2012 (2)

2008 (2)

2007 (1)

P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

1982 (1)

1981 (1)

1979 (1)

Akan, O. B.

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: state-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Alderman, N.

P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
[Crossref]

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[Crossref]

Barnham, K. W. J.

Batchelder, J. S.

Bauer, G. H.

H. Sträter, S. Knabe, T. J. J. Meyer, and G. H. Bauer, “Spectrally and angle-resolved emission of thin film fluorescence collectors,” Prog. Photovoltaics 21, 554–560 (2013).

Bende, E. E.

Benitez, P. G.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic, 2005).

Bose, R.

Bouchet, O.

Brien, D. C. O.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

Büchtemann, A.

Budel, T.

Burgers, A. R.

Chatten, A. J.

Chun, H.

H. Chun, S. Rajbhandari, G. Faulkner, and D. O’Brien, “Effectiveness of blue-filtering in WLED based indoor visible light communication,” in 3rd International Workshop in Optical Wireless Communications (IWOW) (2014), pp. 60–64.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

Cole, T.

Collins, S.

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[Crossref]

Danos, L.

P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
[Crossref]

Dawson, M.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

Dawson, M. D.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Debije, M. G.

M. G. Debije and P. P. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).

Dinc, E.

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: state-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Donegá, C. D. M.

El Tabach, M.

Ergul, O.

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: state-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Farrell, D. J.

Faulkner, G.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

D. O’Brien, R. Turnbull, M. H. Le, G. Faulkner, O. Bouchet, P. Porcon, M. El Tabach, E. Gueutier, M. Wolf, L. Grobe, and L. Jianhui, “High-speed optical wireless demonstrators: conclusions and future directions,” J. Lightwave Technol. 30, 2181–2187 (2012).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, and D. O’Brien, “Effectiveness of blue-filtering in WLED based indoor visible light communication,” in 3rd International Workshop in Optical Wireless Communications (IWOW) (2014), pp. 60–64.

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[Crossref]

Grobe, L.

Grubor, J.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in 33rd European Conference and Exhibition of Optical Communication (VDE Verlag, 2007), post-deadline paper.

Gu, E.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

Gueutier, E.

Haas, H.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

Haji, M.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[Crossref]

Hyunchae, C.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Jianhui, L.

Kalavally, V.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).
[Crossref]

Karunatilaka, D.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).
[Crossref]

Kelly, A. E.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Kennedy, M.

Kittidachachan, P.

P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
[Crossref]

Knabe, S.

H. Sträter, S. Knabe, T. J. J. Meyer, and G. H. Bauer, “Spectrally and angle-resolved emission of thin film fluorescence collectors,” Prog. Photovoltaics 21, 554–560 (2013).

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

Koole, R.

Koonen, T.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in 33rd European Conference and Exhibition of Optical Communication (VDE Verlag, 2007), post-deadline paper.

Langer, K.-D.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in 33rd European Conference and Exhibition of Optical Communication (VDE Verlag, 2007), post-deadline paper.

Le, M. H.

Lee, S. C. J.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in 33rd European Conference and Exhibition of Optical Communication (VDE Verlag, 2007), post-deadline paper.

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[Crossref]

Markvart, T.

P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
[Crossref]

McCormack, S. J.

McKendry, J.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

McKendry, J. J. D.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Meijerink, A.

Meyer, A.

Meyer, T.

Meyer, T. J. J.

H. Sträter, S. Knabe, T. J. J. Meyer, and G. H. Bauer, “Spectrally and angle-resolved emission of thin film fluorescence collectors,” Prog. Photovoltaics 21, 554–560 (2013).

P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
[Crossref]

Miñano, J. C.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic, 2005).

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

O’Brien, D.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

D. O’Brien, R. Turnbull, M. H. Le, G. Faulkner, O. Bouchet, P. Porcon, M. El Tabach, E. Gueutier, M. Wolf, L. Grobe, and L. Jianhui, “High-speed optical wireless demonstrators: conclusions and future directions,” J. Lightwave Technol. 30, 2181–2187 (2012).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, and D. O’Brien, “Effectiveness of blue-filtering in WLED based indoor visible light communication,” in 3rd International Workshop in Optical Wireless Communications (IWOW) (2014), pp. 60–64.

O’Brien, D. C.

Parthiban, R.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).
[Crossref]

Porcon, P.

Quilitz, J.

Rajbhandari, S.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, and D. O’Brien, “Effectiveness of blue-filtering in WLED based indoor visible light communication,” in 3rd International Workshop in Optical Wireless Communications (IWOW) (2014), pp. 60–64.

Ries, H.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

H. Ries, “Thermodynamic limitations of the concentration of electromagnetic radiation,” J. Opt. Soc. Am. 72, 380–385 (1982).
[Crossref]

Slooff, L. H.

Smestad, G.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Sträter, H.

H. Sträter, S. Knabe, T. J. J. Meyer, and G. H. Bauer, “Spectrally and angle-resolved emission of thin film fluorescence collectors,” Prog. Photovoltaics 21, 554–560 (2013).

Tsonev, D.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

Turnbull, R.

van Sark, W. G. J. H. M.

Vanmaekelbergh, D.

Verbunt, P. P.

M. G. Debije and P. P. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).

Videv, S.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Walewski, J. W.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in 33rd European Conference and Exhibition of Optical Communication (VDE Verlag, 2007), post-deadline paper.

Watson, S.

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

Watt, A.

Welford, W. T.

W. T. Welford and R. Winston, Optics of Nonimaging Concentrators: Light and Solar Energy (Academic, 1978).

Winston, R.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic, 2005).

W. T. Welford and R. Winston, Optics of Nonimaging Concentrators: Light and Solar Energy (Academic, 1978).

Wolf, M.

Xie, E.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

Yablonovitch, E.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Zafar, F.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).
[Crossref]

Zewai, A. H.

Zewail, A. H.

Adv. Energy Mater. (1)

M. G. Debije and P. P. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).

Appl. Opt. (2)

CHIMIA Int. J. Chem. (1)

P. Kittidachachan, L. Danos, T. J. J. Meyer, N. Alderman, and T. Markvart, “Photon collection efficiency of fluorescent solar collectors,” CHIMIA Int. J. Chem. 61, 780–786 (2007).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Tsonev, C. Hyunchae, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26, 637–640 (2014).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Commun. (1)

O. Ergul, E. Dinc, and O. B. Akan, “Communicate to illuminate: state-of-the-art and research challenges for visible light communications,” Phys. Commun. 17, 72–85 (2015).
[Crossref]

Prog. Photovoltaics (1)

H. Sträter, S. Knabe, T. J. J. Meyer, and G. H. Bauer, “Spectrally and angle-resolved emission of thin film fluorescence collectors,” Prog. Photovoltaics 21, 554–560 (2013).

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[Crossref]

Sol. Energy Mater. (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21, 99–111 (1990).
[Crossref]

Other (8)

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Academic, 2005).

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. McKendry, E. Gu, M. Dawson, D. C. O. Brien, and H. Haas, “LED based wavelength division multiplexed 10  Gb/s visible light communications,” J. Lightwave Technol. (to be published).
[Crossref]

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in 33rd European Conference and Exhibition of Optical Communication (VDE Verlag, 2007), post-deadline paper.

H. Chun, S. Rajbhandari, G. Faulkner, and D. O’Brien, “Effectiveness of blue-filtering in WLED based indoor visible light communication,” in 3rd International Workshop in Optical Wireless Communications (IWOW) (2014), pp. 60–64.

See, for example, “Si APD, S12023 series,” etc. (Hamamatsu, 2014).

W. T. Welford and R. Winston, Optics of Nonimaging Concentrators: Light and Solar Energy (Academic, 1978).

“Forward error correction for high bit-rate DWDM submarine systems,” , 2004.

http://dx.doi.org/10.17630/d6ae5a33-c93d-4e83-86e5-fcb39ff07350 .

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (5841 KB)      Supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Étendue and fluorescent antenna. (a) Schematic explanation of étendue conservation. The étendue for an optical system is defined as the product of the area of entrance or exit aperture ( S ) times the solid angle of acceptance or output ( Ω ). (b) Schematic representation of the fluorescent antenna. The yellow region consists of a layer of Cm6 in SU-8 coated with epoxy NOA68. APD denotes avalanche photodiode. (c) Photograph of antenna’s edge. The thickness of SU-8 was 15    μm . (d) Photograph of the edge of the antenna covered by masking tape so only light in the organic layer is detected.
Fig. 2.
Fig. 2. Photophysics of Cm6 in SU-8. (a) Absorption and emission spectra (excited at 450 nm) of films made from Cm6 in SU-8. (b) Dependence of PLQY on concentration of Cm6 in SU-8. The inset shows the molecular structure of Cm6. (c) Photoluminescence (PL) versus time measurements, following excitation at 393 nm.
Fig. 3.
Fig. 3. Optical properties of fluorescent antennas deposited from solutions with concentrations as marked. (a) Absorption and facet PL emission spectra of antennas. (b) Attenuation of the collecting power as a function of distance from the collection edge. (c) FoV of the antenna of Cm6 in NOA68 at 1    mg / ml . For comparison, the dashed line shows the cosine law, while the red line shows the FoV of a CPC with similar gain.
Fig. 4.
Fig. 4. Communication link using a fluorescent antenna. (a) Results of BW measurement for different distances of the excitation from the edge of the sample. (b) Comparison between the achievable data rates using OOK, with and without a fluorescent antenna.

Tables (1)

Tables Icon

Table 1. Summary of Fluorescent Antenna Properties

Metrics