Abstract

Substrate-transferred crystalline coatings have recently emerged as a groundbreaking new concept in optical interference coatings. Building upon our initial demonstration of this technology, we have now realized significant improvements in the limiting optical performance of these novel single-crystal GaAs/AlxGa1xAs multilayers. In the near-infrared (NIR), for coating center wavelengths spanning 1064–1560 nm, we have reduced the excess optical losses (scatter + absorption) to levels as low as 3 parts per million (ppm), enabling the realization of a cavity finesse exceeding 3×105 at the telecom-relevant wavelength range near 1550 nm. Moreover, we demonstrate the direct measurement of sub-ppm optical absorption at 1064 nm. Concurrently, we investigate the mid-infrared (MIR) properties of these coatings and observe exceptional performance for first attempts in this important wavelength region. Specifically, we verify excess losses at the hundred ppm level for wavelengths of 3300 and 3700 nm. Taken together, our NIR optical losses are now fully competitive with ion-beam sputtered multilayer coatings, while our first prototype MIR optics have already reached state-of-the-art performance levels for reflectors covering this portion of the fingerprint region for optical gas sensing. Mirrors fabricated with our crystalline coating technique exhibit the lowest mechanical loss, and thus the lowest Brownian noise, the highest thermal conductivity, and, potentially, the widest spectral coverage of any “supermirror” technology in a single material platform. Looking ahead, we see a bright future for crystalline coatings in applications requiring the ultimate levels of optical, thermal, and optomechanical performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic platforms for mid-infrared applications [Invited]

Ting Hu, Bowei Dong, Xianshu Luo, Tsung-Yang Liow, Junfeng Song, Chengkuo Lee, and Guo-Qiang Lo
Photon. Res. 5(5) 417-430 (2017)

Loss factors of mirrors for a gravitational wave antenna

Shuichi Sato, Shinji Miyoki, Masatake Ohashi, Masa-Katsu Fujimoto, Toshitaka Yamazaki, Mitsuhiro Fukushima, Akitoshi Ueda, Ken-ichi Ueda, Koji Watanabe, Kenji Nakamura, Kazuyuki Etoh, Naoya Kitajima, Kazuhiko Ito, and Izumi Kataoka
Appl. Opt. 38(13) 2880-2885 (1999)

Monitoring the ultrafast electric field change at a mid-infrared plasma Bragg mirror

R. Bratschitsch, T. Müller, N. Finger, G. Strasser, K. Unterrainer, and C. Sirtori
Opt. Lett. 26(20) 1618-1620 (2001)

References

  • View by:
  • |
  • |
  • |

  1. D. T. Wei and A. Louderback, “Method for fabricating multi-layer optical films,” U.S. patent4,142,958 (March6, 1979).
  2. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
    [Crossref]
  3. M. Bishof, X. Zhang, M. J. Martin, and J. Ye, “Optical spectrum analyzer with quantum-limited noise floor,” Phys. Rev. Lett. 111, 093604 (2013).
    [Crossref]
  4. S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40, 2112–2115 (2015).
    [Crossref]
  5. The LIGO Scientific Collaboration, “Advanced LIGO,” Class. Quantum Grav. 32, 074001 (2015).
    [Crossref]
  6. LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  7. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref]
  8. G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
    [Crossref]
  9. G. Harry, T. Bodiya, and R. DeSalvo, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012).
  10. J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
    [Crossref]
  11. M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
    [Crossref]
  12. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
    [Crossref]
  13. G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
    [Crossref]
  14. G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald, “Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium,” Appl. Phys. Lett. 96, 261102 (2010).
    [Crossref]
  15. G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.
  16. G. D. Cole, “Cavity optomechanics with low-noise crystalline mirrors,” Proc. SPIE 8458, 845807 (2012).
    [Crossref]
  17. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
    [Crossref]
  18. K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15 µm,” Opt. Lett. 40, 1705–1708 (2015).
    [Crossref]
  19. T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
    [Crossref]
  20. S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).
    [Crossref]
  21. A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
    [Crossref]
  22. C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, “On the origin and elimination of macroscopic defects in MBE films,” J. Cryst. Growth 51, 299–303 (1981).
    [Crossref]
  23. J. L. Hall, J. Ye, and L.-S. Ma, “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000).
    [Crossref]
  24. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
    [Crossref]
  25. F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
    [Crossref]
  26. A. J. Fleisher, D. A. Long, Q. Liu, and J. T. Hodges, “Precision interferometric measurements of mirror birefringence in high-finesse optical resonators,” Phys. Rev. A 93, 013833 (2016).
    [Crossref]
  27. H. Davies, “The reflection of electromagnetic waves from a rough surface,” Proc. Inst. Electr. Eng. 101, 209–214 (1954).
  28. H. E. Bennett and J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51, 123–129 (1961).
    [Crossref]
  29. M. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
    [Crossref]
  30. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
    [Crossref]
  31. A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
    [Crossref]
  32. A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
    [Crossref]
  33. B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
    [Crossref]
  34. C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
    [Crossref]
  35. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref]
  36. A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
    [Crossref]
  37. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
    [Crossref]
  38. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
    [Crossref]
  39. W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114, 59–63 (1959).
    [Crossref]
  40. M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
    [Crossref]
  41. D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
    [Crossref]
  42. A. Koeninger, G. Boehm, R. Meyer, and M.-C. Amann, “BaCaF2/III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices,” Appl. Phys. B 117, 1091–1097 (2014).
    [Crossref]
  43. C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials,” arXiv:1603.07305 (2016).
  44. S. Adachi, Properties of Aluminium Gallium Arsenide (IET, 1993).

2016 (4)

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

A. J. Fleisher, D. A. Long, Q. Liu, and J. T. Hodges, “Precision interferometric measurements of mirror birefringence in high-finesse optical resonators,” Phys. Rev. A 93, 013833 (2016).
[Crossref]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

2015 (3)

2014 (3)

A. Koeninger, G. Boehm, R. Meyer, and M.-C. Amann, “BaCaF2/III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices,” Appl. Phys. B 117, 1091–1097 (2014).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

2013 (4)

A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

M. Bishof, X. Zhang, M. J. Martin, and J. Ye, “Optical spectrum analyzer with quantum-limited noise floor,” Phys. Rev. Lett. 111, 093604 (2013).
[Crossref]

2012 (2)

G. D. Cole, “Cavity optomechanics with low-noise crystalline mirrors,” Proc. SPIE 8458, 845807 (2012).
[Crossref]

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

2010 (2)

G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald, “Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium,” Appl. Phys. Lett. 96, 261102 (2010).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

2009 (4)

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

2008 (3)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
[Crossref]

M. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

2004 (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

2002 (1)

A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
[Crossref]

2001 (1)

C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[Crossref]

2000 (2)

J. L. Hall, J. Ye, and L.-S. Ma, “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000).
[Crossref]

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).
[Crossref]

1998 (1)

J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
[Crossref]

1992 (2)

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
[Crossref]

1981 (1)

C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, “On the origin and elimination of macroscopic defects in MBE films,” J. Cryst. Growth 51, 299–303 (1981).
[Crossref]

1974 (1)

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[Crossref]

1961 (1)

1959 (1)

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114, 59–63 (1959).
[Crossref]

1954 (1)

H. Davies, “The reflection of electromagnetic waves from a rough surface,” Proc. Inst. Electr. Eng. 101, 209–214 (1954).

Adachi, S.

S. Adachi, Properties of Aluminium Gallium Arsenide (IET, 1993).

Adhikari, R. X.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

Afromowitz, M. A.

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[Crossref]

Alexandrovski, A.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Amann, M.-C.

A. Koeninger, G. Boehm, R. Meyer, and M.-C. Amann, “BaCaF2/III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices,” Appl. Phys. B 117, 1091–1097 (2014).
[Crossref]

Andrews, A. M.

A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
[Crossref]

Arai, K.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Aspelmeyer, M.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15 µm,” Opt. Lett. 40, 1705–1708 (2015).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald, “Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium,” Appl. Phys. Lett. 96, 261102 (2010).
[Crossref]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
[Crossref]

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Babic, D.

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

Bai, Y.

G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald, “Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium,” Appl. Phys. Lett. 96, 261102 (2010).
[Crossref]

Battesti, R.

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

Benko, C.

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

Bennett, H. E.

Bielsa, F.

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

M. Bishof, X. Zhang, M. J. Martin, and J. Ye, “Optical spectrum analyzer with quantum-limited noise floor,” Phys. Rev. Lett. 111, 093604 (2013).
[Crossref]

Bjork, B.

A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Bjork, B. J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Bloom, B. J.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Bobeth, M.

A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
[Crossref]

Bodiya, T.

G. Harry, T. Bodiya, and R. DeSalvo, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012).

Boehm, G.

A. Koeninger, G. Boehm, R. Meyer, and M.-C. Amann, “BaCaF2/III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices,” Appl. Phys. B 117, 1091–1097 (2014).
[Crossref]

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Bui, T. Q.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Campbell, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Chalermsongsak, T.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Changala, P. B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Cole, G.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Cole, G. D.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15 µm,” Opt. Lett. 40, 1705–1708 (2015).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

G. D. Cole, “Cavity optomechanics with low-noise crystalline mirrors,” Proc. SPIE 8458, 845807 (2012).
[Crossref]

G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald, “Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium,” Appl. Phys. Lett. 96, 261102 (2010).
[Crossref]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
[Crossref]

Corzine, S.

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

Cossel, K. C.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

Davies, H.

H. Davies, “The reflection of electromagnetic waves from a rough surface,” Proc. Inst. Electr. Eng. 101, 209–214 (1954).

DeSalvo, R.

G. Harry, T. Bodiya, and R. DeSalvo, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012).

DeSimone, D.

C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, “On the origin and elimination of macroscopic defects in MBE films,” J. Cryst. Growth 51, 299–303 (1981).
[Crossref]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Doyle, J. M.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Dupays, A.

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

Falke, S.

Fejer, M.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Fermann, M. E.

Fitzgerald, E. A.

G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald, “Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium,” Appl. Phys. Lett. 96, 261102 (2010).
[Crossref]

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).
[Crossref]

Fleisher, A.

A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Fleisher, A. J.

A. J. Fleisher, D. A. Long, Q. Liu, and J. T. Hodges, “Precision interferometric measurements of mirror birefringence in high-finesse optical resonators,” Phys. Rev. A 93, 013833 (2016).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Follman, D.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

K. U. Schreiber, R. J. Thirkettle, R. B. Hurst, D. Follman, G. D. Cole, M. Aspelmeyer, and J.-P. R. Wells, “Sensing Earth’s rotation with a helium-neon ring laser operating at 1.15 µm,” Opt. Lett. 40, 1705–1708 (2015).
[Crossref]

Foltynowicz, A.

A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Fouché, M.

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

Gastaldi, U.

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

Gigan, S.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
[Crossref]

Gorodetsky, M. L.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials,” arXiv:1603.07305 (2016).

Gorshkov, A. V.

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

Grebing, C.

Gröblacher, S.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
[Crossref]

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Gugler, K.

G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
[Crossref]

Gustafson, E. K.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Häfner, S.

Hall, E. D.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Hall, J. L.

J. L. Hall, J. Ye, and L.-S. Ma, “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000).
[Crossref]

Harry, G.

G. Harry, T. Bodiya, and R. DeSalvo, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012).

Hartl, I.

Heckl, O. H.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Hertzberg, J. B.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

Hodges, J. T.

A. J. Fleisher, D. A. Long, Q. Liu, and J. T. Hodges, “Precision interferometric measurements of mirror birefringence in high-finesse optical resonators,” Phys. Rev. A 93, 013833 (2016).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Hood, C. J.

C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[Crossref]

Hurst, R. B.

Ih, C.

J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
[Crossref]

Javerzac-Galy, C.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials,” arXiv:1603.07305 (2016).

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[Crossref]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
[Crossref]

Kippenberg, T. J.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials,” arXiv:1603.07305 (2016).

Koeninger, A.

A. Koeninger, G. Boehm, R. Meyer, and M.-C. Amann, “BaCaF2/III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices,” Appl. Phys. B 117, 1091–1097 (2014).
[Crossref]

Kolodzey, J.

J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
[Crossref]

Lalezari, R.

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Lecaplain, C.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials,” arXiv:1603.07305 (2016).

Legero, T.

Lisdat, C.

Liu, Q.

A. J. Fleisher, D. A. Long, Q. Liu, and J. T. Hodges, “Precision interferometric measurements of mirror birefringence in high-finesse optical resonators,” Phys. Rev. A 93, 013833 (2016).
[Crossref]

Long, D. A.

A. J. Fleisher, D. A. Long, Q. Liu, and J. T. Hodges, “Precision interferometric measurements of mirror birefringence in high-finesse optical resonators,” Phys. Rev. A 93, 013833 (2016).
[Crossref]

Louderback, A.

D. T. Wei and A. Louderback, “Method for fabricating multi-layer optical films,” U.S. patent4,142,958 (March6, 1979).

Ma, L.-S.

J. L. Hall, J. Ye, and L.-S. Ma, “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000).
[Crossref]

Marian, A.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Markosian, A.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Martin, M. J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

M. Bishof, X. Zhang, M. J. Martin, and J. Ye, “Optical spectrum analyzer with quantum-limited noise floor,” Phys. Rev. Lett. 111, 093604 (2013).
[Crossref]

Maslowski, P.

A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Merimaa, M.

Meyer, R.

A. Koeninger, G. Boehm, R. Meyer, and M.-C. Amann, “BaCaF2/III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices,” Appl. Phys. B 117, 1091–1097 (2014).
[Crossref]

Milotti, E.

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

Nicholson, T. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Ohno, H.

C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, “On the origin and elimination of macroscopic defects in MBE films,” J. Cryst. Growth 51, 299–303 (1981).
[Crossref]

Okumura, M.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Patterson, D.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Pengo, R.

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

Peters, A.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Piprek, J.

J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
[Crossref]

Pohl, J.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Pompe, W.

A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
[Crossref]

Porteus, J. O.

Rathbun, L.

C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, “On the origin and elimination of macroscopic defects in MBE films,” J. Cryst. Growth 51, 299–303 (1981).
[Crossref]

Rempe, G.

Rey, A. M.

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

Rizzo, C.

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

Robilliard, C.

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

Romanov, A. E.

A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
[Crossref]

Route, R.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Ruoso, G.

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

Schreiber, K. U.

Schroter, B.

J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
[Crossref]

Schwab, K. C.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

Seifert, F.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Smith, J. R.

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Spaun, B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

Speck, J. S.

A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
[Crossref]

Spitzer, W. G.

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114, 59–63 (1959).
[Crossref]

Sterr, U.

Stowe, M. C.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Swallows, M. D.

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

Thirkettle, R. J.

Thompson, R. J.

Thorpe, M.

M. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

Ting, S. M.

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).
[Crossref]

Troger, T.

J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
[Crossref]

Valle, F. D.

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

Vanner, M.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Vanner, M. R.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

Vogt, S.

von Stecher, J.

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

Wei, D. T.

D. T. Wei and A. Louderback, “Method for fabricating multi-layer optical films,” U.S. patent4,142,958 (March6, 1979).

Wells, J.-P. R.

Weyers, M.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Whelan, J. M.

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114, 59–63 (1959).
[Crossref]

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Wilson-Rae, I.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Wood, C.

C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, “On the origin and elimination of macroscopic defects in MBE films,” J. Cryst. Growth 51, 299–303 (1981).
[Crossref]

Ye, J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

M. Bishof, X. Zhang, M. J. Martin, and J. Ye, “Optical spectrum analyzer with quantum-limited noise floor,” Phys. Rev. Lett. 111, 093604 (2013).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

M. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[Crossref]

J. L. Hall, J. Ye, and L.-S. Ma, “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000).
[Crossref]

Zavattini, G.

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

Zhang, W.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

M. Bishof, X. Zhang, M. J. Martin, and J. Ye, “Optical spectrum analyzer with quantum-limited noise floor,” Phys. Rev. Lett. 111, 093604 (2013).
[Crossref]

Zorn, M.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

Annu. Rev. Anal. Chem. (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Appl. Phys. B (4)

M. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, and C. Rizzo, “Birefringence of interferential mirrors at normal incidence,” Appl. Phys. B 97, 457–463 (2009).
[Crossref]

A. Foltynowicz, P. Maslowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

A. Koeninger, G. Boehm, R. Meyer, and M.-C. Amann, “BaCaF2/III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices,” Appl. Phys. B 117, 1091–1097 (2014).
[Crossref]

Appl. Phys. Lett. (2)

G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008).
[Crossref]

G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald, “Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium,” Appl. Phys. Lett. 96, 261102 (2010).
[Crossref]

Class. Quantum Grav. (1)

The LIGO Scientific Collaboration, “Advanced LIGO,” Class. Quantum Grav. 32, 074001 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Piprek, T. Troger, B. Schroter, J. Kolodzey, and C. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 10, 81–83 (1998).
[Crossref]

Int. J. Mod. Phys. A (1)

G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. D. Valle, and E. Milotti, “Measuring the magnetic birefringence of vacuum: the PVLAS experiment,” Int. J. Mod. Phys. A 27, 1260017 (2012).
[Crossref]

J. Appl. Phys. (2)

S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates,” J. Appl. Phys. 87, 2618–2628 (2000).
[Crossref]

A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, “Modeling cross-hatch surface morphology in growing mismatched layers,” J. Appl. Phys. 91, 1933–1943 (2002).
[Crossref]

J. Cryst. Growth (1)

C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, “On the origin and elimination of macroscopic defects in MBE films,” J. Cryst. Growth 51, 299–303 (1981).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Lett. (1)

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Metrologia (1)

T. Chalermsongsak, E. D. Hall, G. D. Cole, D. Follman, F. Seifert, K. Arai, E. K. Gustafson, J. R. Smith, M. Aspelmeyer, and R. X. Adhikari, “Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors,” Metrologia 53, 860–868 (2016).
[Crossref]

Nat. Photonics (1)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

Nat. Phys. (1)

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[Crossref]

Nature (4)

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probe of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533, 517–520 (2016).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014).
[Crossref]

Opt. Lett. (4)

Phys. Rev. (1)

W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114, 59–63 (1959).
[Crossref]

Phys. Rev. A (3)

C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001).
[Crossref]

A. J. Fleisher, D. A. Long, Q. Liu, and J. T. Hodges, “Precision interferometric measurements of mirror birefringence in high-finesse optical resonators,” Phys. Rev. A 93, 013833 (2016).
[Crossref]

J. L. Hall, J. Ye, and L.-S. Ma, “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000).
[Crossref]

Phys. Rev. Lett. (2)

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

M. Bishof, X. Zhang, M. J. Martin, and J. Ye, “Optical spectrum analyzer with quantum-limited noise floor,” Phys. Rev. Lett. 111, 093604 (2013).
[Crossref]

Proc. Inst. Electr. Eng. (1)

H. Davies, “The reflection of electromagnetic waves from a rough surface,” Proc. Inst. Electr. Eng. 101, 209–214 (1954).

Proc. SPIE (2)

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

G. D. Cole, “Cavity optomechanics with low-noise crystalline mirrors,” Proc. SPIE 8458, 845807 (2012).
[Crossref]

Science (2)

M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636 (2013).
[Crossref]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004).
[Crossref]

Solid State Commun. (1)

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974).
[Crossref]

Other (5)

D. T. Wei and A. Louderback, “Method for fabricating multi-layer optical films,” U.S. patent4,142,958 (March6, 1979).

G. Harry, T. Bodiya, and R. DeSalvo, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012).

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), (IEEE, 2010), pp. 847–850.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials,” arXiv:1603.07305 (2016).

S. Adachi, Properties of Aluminium Gallium Arsenide (IET, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Details of our NIR crystalline coatings. Top: schematic of a crystalline supermirror consisting of a super-polished fused silica substrate with a substrate-transferred NIR crystalline coating. The first inset shows the repeating and alternating high-index GaAs and low-index Al 0.92 Ga 0.08 As layers, while the second shows the zincblende unit cell of which the coating is comprised. In this paper, we present results for NIR multilayers with both 38.5 periods (shown here), with a nominal transmission of 10 ppm (yielding a finesse of 2 × 10 5 ) and 41.5 periods, reducing the transmission to 5 ppm and increasing the cavity finesse to 3 × 10 5 at 1550 nm when transferred to fused silica substrates. Bottom: measured reflectance spectrum for a 38.5-period quarter-wave epitaxial multilayer with a center wavelength of 1550 nm following removal from the original GaAs growth wafer and bonding to a super-polished fused silica substrate with a 1 m radius of curvature.

Fig. 2.
Fig. 2.

Position-dependent optical ringdown of a 1550 nm crystalline coating. In this experiment we construct a 75-mm long optical cavity using a curved (1 m radius of curvature) IBS-coated reference mirror as the input coupler and a planar crystalline coated sample as the backreflector. The dielectric reference mirror has a total loss, including scatter + absorption + transmission, of 6 ppm, while the crystalline coating under test has a nominal transmission of 10 ppm. As indicated in the inset, six discrete positions in a 3 × 2 configuration, with roughly 1 mm spacing, are probed on the crystalline mirror, which is mounted on a translation stage. We observe a weak position dependence in the excess losses (scatter + absorption, S+A), with all points 5    ppm for the optimized crystalline coating.

Fig. 3.
Fig. 3.

Ultralow optical loss NIR crystalline coatings. (a) Position-dependent finesse measurements for a 1550 nm crystalline coating on 1 m radius of curvature fused silica substrates with a nominal transmission of 5 ppm and a cavity length of 240 mm. The inset shows the relative position of each measured spot on the mirror pair, compared with the 8 mm diameter coating disk; each data point is color-coded to match the positioning. The positions with lowest loss yield finesse values between 2.5 × 10 5 and 3 × 10 5 , highlighted by the gray band in the plot. Two points with increased losses yield a reduced finesse of 1 × 10 5 . (b) Normalized and fitted optical ringdown for the lowest loss position [point 2 in plot (a)]. For this measurement the 1/e decay time is 77 μs, yielding an optical finesse of 3 × 10 5 .

Fig. 4.
Fig. 4.

PCI measurement of sub-ppm optical absorption at 1064 nm in a 35.5-period substrate-transferred crystalline coating. The use of a visible (633 nm) He–Ne probe laser in this system induces excess absorption via photogenerated carriers; these points are shown in red. With no probe-induced free-carrier losses, the absorption would remain independent of the applied probe power. The intrinsic absorption of the multilayer in the NIR is found by plotting this induced absorption as a function of the He–Ne probe power, with the limiting absorption level corresponding to an effective zero probe power. The fitting function is based on the Beer–Lambert law, assuming a power (and thus photon number) dependent photogenerated carrier concentration. The blue point corresponds to an induced absorption experiment using an additional probe operating at a wavelength for which the coating is transparent (1155 nm): by cycling 0.9 mW of He–Ne probe power off and on, the transmitted NIR probe detects a nearly sixfold change in the absorption signal, thus confirming and quantifying the free-carrier effect for the red probe. The noise floor for this measurement is 0.2 ppm for the 633 nm probe and slightly higher at 0.3 ppm for the 1155 nm probe. Both the NIR probe datum and the y intercept of the absorbing He–Ne probe yield consistent absorption values of 0.7 and 0.62 ppm, respectively, in this coating at 1064 nm.

Fig. 5.
Fig. 5.

Prototype MIR crystalline coatings on silicon. Top: basic schematic of the MIR reflectors characterized in this effort. The crystalline multilayer consists of either 28.5 or 32.5 periods of alternating high-index GaAs layers and low-index Al 0.92 Ga 0.08 As layers transferred to super-polished single-crystal Si substrates with a 1 m radius of curvature and a broadband (3–4 μm) backside antireflection coating. Bottom: reflectance spectrum measured via Fourier transform infrared spectroscopy (FTIR) for a 28.5-period coating centered at 3.7 μm. The stopband of this mirror spans nearly 300 nm, making crystalline coatings promising reflectors for CE-DFCS.

Fig. 6.
Fig. 6.

Finesse measurements for the 3.3 μm (top) and 3.7 μm (bottom) mirror pairs. Each cavity, of length 0.5488 m, was excited with a broad-bandwidth optical frequency comb and the transmitted light from the cavity was spectrally resolved using a reflection grating monochromator. At each wavelength, the ringdown time of the cavity was used along with its length to calculate the finesse. The error bars on both traces represent the ± 1 σ standard error from the measurement of 30 (top) and 10 (bottom) ringdown traces at each wavelength.

Fig. 7.
Fig. 7.

Calculated absorption loss as a function of center wavelength for unintentionally doped GaAs / Al 0.92 Ga 0.08 As Bragg mirrors. This theoretical curve assumes background n-type doping in the epitaxial films with a concentration at the low 10 14    cm 3 level, yielding ppm-level losses in the near-IR (from 1000–1600 nm) as verified experimentally. The curve also takes into account the dispersion (i.e., the variation in refractive index with frequency) of both the high- and low-index layers, as well as the variation in penetration depth with wavelength for mirrors covering the range from just below the GaAs absorption edge at 870    nm at 300 K out to 7 μm, where free-carrier losses become a significant impediment. The kinks in the dataset are a consequence of the interpolation function used to generate the final absorption curve.

Tables (1)

Tables Icon

Table 1. Measured Transmission ( T measured ), Losses ( L measured ), Finesse, and Cavity Transmission ( T cavity ) at the Design Wavelength ( λ ) of the Mirrors a

Metrics