Abstract

Ultrahigh-speed optical interconnects are essential to future cloud computing. Further increase in optical transmission speed has been hindered by power consumption and limited bandwidth resources, for which integrated optical transceivers using advanced modulation formats, such as pulse-amplitude modulation (PAM), are a promising solution. We report 80  Gb/s PAM operation of a silicon microring modulator (MRM) with an ultralow power consumption below 7  fJ/bit. We also report the first demonstration of PAM-8 modulation of MRMs in the Gb/s order, achieving error-free capability at 45  Gb/s, using 1  fJ/bit. To the best of our knowledge, these results feature the lowest power consumption, per transmitted bit, ever demonstrated at such high data rates. We further demonstrate PAM data transmission up to 64  Gb/s over 5 km. Simultaneous achievement of ultrafast modulation and ultralow power consumption is a critical step toward next-generation optical interconnects.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic 56  Gb/s silicon photonic pulse-amplitude modulation transmitter

Chi Xiong, Douglas M. Gill, Jonathan E. Proesel, Jason S. Orcutt, Wilfried Haensch, and William M. J. Green
Optica 3(10) 1060-1065 (2016)

Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s

K. Bédard, A. D. Simard, B. Filion, Y. Painchaud, L. A. Rusch, and S. LaRochelle
Opt. Express 24(3) 2413-2419 (2016)

High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Mohamed Morsy-Osman, and David V. Plant
Opt. Express 25(12) 13222-13229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).
  2. Y. Kai, M. Nishihara, T. Tanaka, and T. Drenski, “Experimental comparison of pulse amplitude modulation PAM and discrete multi-tone DMT for short-reach 400-Gb/s data communication,” in European Conference on Optical Communications (ECOC) (2013), paper Th1F3.
  3. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  4. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.
  5. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref]
  6. Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6
  7. K. Bédard, A. D. Simard, B. Fillion, Y. Painchaud, L. A. Rusch, and S. LaRochelle, “Dual phase-shift Bragg grating silicon photonic modulator operating up to 60  Gb/s,” Opt. Express 24, 2413–2419 (2016).
    [Crossref]
  8. R. Dubé-Demers, J. St-Yves, A. Bois, Q. Zhong, M. Caverley, Y. Wang, L. Chrostowski, S. LaRochelle, D. V. Plant, and W. Shi, “Analytical modeling of silicon microring and microdisk modulators with electrical and optical dynamics,” J. Lightwave Technol. 33, 4240–4252 (2015).
    [Crossref]
  9. H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22, 15178–15189 (2014).
    [Crossref]
  10. P. Dong, C. Xie, L. L. Buhl, and Y. K. Chen, “Silicon microring modulators for advanced modulation formats,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.
  11. L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.
  12. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753 (2008).
    [Crossref]
  13. M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2007).
  14. “Media access control parameters, physical layers, and management parameters for 40-Gb/s and 100-Gb/s operation,” (2010).
  15. J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20, 7915–7928 (2012).
    [Crossref]
  16. “Forward error correction for high bit-rate DWDM submarine systems,” (2004).
  17. “IEEE P802.3bs 400-Gb/s Ethernet Task Force,” (2015).
  18. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
    [Crossref]
  19. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10-Gb/s silicon photonic heater-modulator,” in Optical Fiber Communication Conference (OFC) (2012), paper OW4I.5.
  20. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [Crossref]
  21. Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption,” IEEE Photon. Technol. Lett. 27, 2319–2322 (2015).
    [Crossref]
  22. Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The large time-frequency analysis toolbox 2.0,” in Sound, Music, and Motion, M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, eds., Lecture Notes in Computer Science (Springer, 2014), pp. 419–442.

2016 (1)

2015 (2)

2014 (2)

2013 (1)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20, 7915–7928 (2012).
[Crossref]

2011 (2)

2008 (1)

Absil, P.

Baehr-Jones, T.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Balazs, P.

Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The large time-frequency analysis toolbox 2.0,” in Sound, Music, and Motion, M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, eds., Lecture Notes in Computer Science (Springer, 2014), pp. 419–442.

Ballato, J.

M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2007).

Bédard, K.

Bergman, K.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bois, A.

Buhl, L. L.

P. Dong, C. Xie, L. L. Buhl, and Y. K. Chen, “Silicon microring modulators for advanced modulation formats,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Caverley, M.

Chen, D.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Chen, Y. K.

P. Dong, C. Xie, L. L. Buhl, and Y. K. Chen, “Silicon microring modulators for advanced modulation formats,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Cho, J.

Chrostowski, L.

Chu, T.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Cunningham, J. E.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Ding, R.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Dong, P.

P. Dong, C. Xie, L. L. Buhl, and Y. K. Chen, “Silicon microring modulators for advanced modulation formats,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Drenski, T.

Y. Kai, M. Nishihara, T. Tanaka, and T. Drenski, “Experimental comparison of pulse amplitude modulation PAM and discrete multi-tone DMT for short-reach 400-Gb/s data communication,” in European Conference on Optical Communications (ECOC) (2013), paper Th1F3.

Dubé-Demers, R.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Feng, L. M.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Fillion, B.

Gupta, M. C.

M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2007).

Hao, Y.

Hochberg, M.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Holighaus, N.

Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The large time-frequency analysis toolbox 2.0,” in Sound, Music, and Motion, M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, eds., Lecture Notes in Computer Science (Springer, 2014), pp. 419–442.

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Hu, R.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Jayatilleka, H.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption,” IEEE Photon. Technol. Lett. 27, 2319–2322 (2015).
[Crossref]

Jiang, X.

Jim, A. E.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Kai, Y.

Y. Kai, M. Nishihara, T. Tanaka, and T. Drenski, “Experimental comparison of pulse amplitude modulation PAM and discrete multi-tone DMT for short-reach 400-Gb/s data communication,” in European Conference on Optical Communications (ECOC) (2013), paper Th1F3.

Krishnamoorthy, A. V.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

LaRochelle, S.

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10-Gb/s silicon photonic heater-modulator,” in Optical Fiber Communication Conference (OFC) (2012), paper OW4I.5.

Li, G.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Li, Q.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Li, X.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

Li, Y.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Li, Z.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Liu, Y.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Lo, P. G. Q.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Lu, Z.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption,” IEEE Photon. Technol. Lett. 27, 2319–2322 (2015).
[Crossref]

Luo, Y.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Murray, K.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption,” IEEE Photon. Technol. Lett. 27, 2319–2322 (2015).
[Crossref]

Nishihara, M.

Y. Kai, M. Nishihara, T. Tanaka, and T. Drenski, “Experimental comparison of pulse amplitude modulation PAM and discrete multi-tone DMT for short-reach 400-Gb/s data communication,” in European Conference on Optical Communications (ECOC) (2013), paper Th1F3.

Painchaud, Y.

Pantouvaki, M.

Plant, D. V.

Poon, J. K. S.

Pruša, Z.

Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The large time-frequency analysis toolbox 2.0,” in Sound, Music, and Motion, M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, eds., Lecture Notes in Computer Science (Springer, 2014), pp. 419–442.

Qiu, Y.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Raj, K.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Rusch, L. A.

Sacher, W. D.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Shi, W.

Shubin, I.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Simard, A. D.

Søndergaard, P. L.

Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The large time-frequency analysis toolbox 2.0,” in Sound, Music, and Motion, M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, eds., Lecture Notes in Computer Science (Springer, 2014), pp. 419–442.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

St-Yves, J.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Tanaka, T.

Y. Kai, M. Nishihara, T. Tanaka, and T. Drenski, “Experimental comparison of pulse amplitude modulation PAM and discrete multi-tone DMT for short-reach 400-Gb/s data communication,” in European Conference on Optical Communications (ECOC) (2013), paper Th1F3.

Thacker, H.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10-Gb/s silicon photonic heater-modulator,” in Optical Fiber Communication Conference (OFC) (2012), paper OW4I.5.

Van Campenhout, J.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Wang, L.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Wang, Y.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10-Gb/s silicon photonic heater-modulator,” in Optical Fiber Communication Conference (OFC) (2012), paper OW4I.5.

Wiesmeyr, C.

Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The large time-frequency analysis toolbox 2.0,” in Sound, Music, and Motion, M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, eds., Lecture Notes in Computer Science (Springer, 2014), pp. 419–442.

Winzer, P. J.

Xiao, X.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

Xie, C.

J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20, 7915–7928 (2012).
[Crossref]

P. Dong, C. Xie, L. L. Buhl, and Y. K. Chen, “Silicon microring modulators for advanced modulation formats,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

Xu, H.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

Xuan, Z.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Yang, J.

Yang, Q.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Yang, Y.

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Yao, J.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Ying, D.

Young, R. W.

Yu, H.

Yu, J.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Yu, S.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

Yu, Y.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

Zheng, X.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25-Gb/s 1-V driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Zhong, Q.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10-Gb/s silicon photonic heater-modulator,” in Optical Fiber Communication Conference (OFC) (2012), paper OW4I.5.

IEEE J. Sel. Top. Quantum Electron. (1)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 3401819 (2013).

IEEE Photon. Technol. Lett. (1)

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-μW power consumption,” IEEE Photon. Technol. Lett. 27, 2319–2322 (2015).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Opt. Express (6)

Other (11)

Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The large time-frequency analysis toolbox 2.0,” in Sound, Music, and Motion, M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, eds., Lecture Notes in Computer Science (Springer, 2014), pp. 419–442.

P. Dong, C. Xie, L. L. Buhl, and Y. K. Chen, “Silicon microring modulators for advanced modulation formats,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.2.

L. Wang, R. Hu, L. M. Feng, Y. Qiu, X. Xiao, D. Chen, Q. Yang, S. Yu, Z. Li, J. Yu, and Y. Yu, “Transmission of 24-Gb/s PAM-4 over 150-km SSMF using a driverless silicon microring modulator,” in Asia Communications and Photonics Conference (ACPC) (2014), paper ATh4D.

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, “60-Gb/s silicon modulators with enhanced electro-optical efficiency,” in Optical Fiber Communication Conference (OFC) (2013), paper OW4J.3.

Y. Kai, M. Nishihara, T. Tanaka, and T. Drenski, “Experimental comparison of pulse amplitude modulation PAM and discrete multi-tone DMT for short-reach 400-Gb/s data communication,” in European Conference on Optical Communications (ECOC) (2013), paper Th1F3.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10-Gb/s silicon photonic heater-modulator,” in Optical Fiber Communication Conference (OFC) (2012), paper OW4I.5.

“Forward error correction for high bit-rate DWDM submarine systems,” (2004).

“IEEE P802.3bs 400-Gb/s Ethernet Task Force,” (2015).

M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2007).

“Media access control parameters, physical layers, and management parameters for 40-Gb/s and 100-Gb/s operation,” (2010).

Y. Liu, R. Ding, Q. Li, Z. Xuan, Y. Li, Y. Yang, A. E. Jim, P. G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320-Gb/s and 160-Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference (OFC) (2014), paper Th4G.6

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (13542 KB)      This is the supplementary material, used under the name Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Partial layout of the mask used for the fabrication of the device. The resistive heater is present in the coupling region (bottom section). The slab is shown in gray, vias are shown as circles, and metal connections are shown in teal. The P and N dopant levels are used to implement the lateral p–n junction whereas the highly doped regions, i.e., P + + and N + + , are used as ohmic contacts. The blue dashed line indicates the position of the cross section presented in (b). (b) Vertical and centered cross section of the modulator, from top to bottom in (a) (not to scale). The red dashed line represents the center of the ring. The left-hand side represents the p–n junction of the modulator with metal contacts a and b used to transmit the signal. The right-hand side represents the coupling region and the heater. The heater is controlled via metal contacts c and d . From the graphical representation, it is obvious that the ring and bus waveguides are heated together, thus minimizing the impact on the coupling conditions.

Fig. 2.
Fig. 2.

(a) Measured power transmission spectra in the vicinity of a resonance. The DC voltages are noted in units of volt. (b) Measured EO scattering parameter S 21 as a function of the frequency. S 21 values are measured for various detuning frequencies, here noted in gigahertz, and normalized at 100 MHz. The dashed horizontal line indicates the 3    dB level. (c) Predicted OMA as a function of the optical detuning. The driving modulation frequency f e l is indicated in gigahertz and the predictions are done with the aid of the dynamical model [8].

Fig. 3.
Fig. 3.

Schematic of the test bench we use for BER measurements. In the transmission experiments, SSMFs of various lengths are introduced between the optical filter and variable attenuator (not shown in the schematic).

Fig. 4.
Fig. 4.

Electrical eye diagrams collected at the RTO after optical-to-electrical conversion. (a) OOK at 30    Gb / s , 3.5 dBm of received power. (b) PAM-4 at 80    Gb / s , 7 dBm of received power, equalized. (c) and (d) PAM-4 at 64    Gb / s , 7 dBm of received power, equalized, for back-to-back and 5 km transmission, respectively. (e) and (f) PAM-8 at 45    Gb / s , 7 dBm of received power; the former is equalized.

Fig. 5.
Fig. 5.

Measured BERs. (a) PAM-4 in a back-to-back configuration; BER below the pre-FEC threshold is demonstrated up to 80    Gb / s using equalization and up to 64    Gb / s without equalization. (b) PAM-4 back-to-back and after 5 km of SSMF. BER below the pre-FEC threshold is demonstrated up to 64    Gb / s using equalization and up to 52    Gb / s without equalization. (c) PAM-8 back-to-back. Modulation of PAM-8 signal with a BER below the pre-FEC threshold is demonstrated up to 45    Gb / s without using equalization. The curves in (a) and (c) highlight the effect of the equalization, whereas the effect of the distance and associated power penalty is shown in (b). The dashed horizontal lines mark the pre-FEC threshold.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E T = C V p p 2 i = 1 N 1 ( N i ) ( i N 1 ) 2 ,
E b = E T N 2 log 2 ( N ) .

Metrics