Abstract

High-Q photonic microcavity sensors have enabled the label-free measurement of nanoparticles, such as single viruses and large molecules, close to the fundamental limits of detection. However, key scientific challenges persist: (1) photons do not directly couple to mechanical parameters such as mass density, compressibility, or viscoelasticity, and (2) current techniques cannot measure all particles in a fluid sample due to the reliance on random diffusion to bring analytes to the sensing region. Here, we present a new, label-free microfluidic optomechanical sensor that addresses both challenges, enabling, for the first time, the rapid photonic sensing of the mechanical properties of freely flowing particles in a fluid. Sensing is enabled by optomechanical coupling of photons to long-range phonons that cast a near-perfect net deep inside the device. Our opto-mechano-fluidic approach enables the measurement of particle mass density, mechanical compressibility, and viscoelasticity at rates potentially exceeding 10,000 particles/second. Uniquely, we show that the sensitivity of this high-Q microcavity sensor is highest when the analytes are located furthest from the optical mode, at the center of the device, where the flow is fastest. Our results enable till-date inaccessible mechanical analysis of flowing particles at speeds comparable to commercial flow cytometry.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aerostatically tunable optomechanical oscillators

Kewen Han, Jun Hwan Kim, and Gaurav Bahl
Opt. Express 22(2) 1267-1276 (2014)

Quasi-droplet microbubbles for high resolution sensing applications

Yong Yang, Jonathan Ward, and Síle Nic Chormaic
Opt. Express 22(6) 6881-6898 (2014)

Sub-pg mass sensing and measurement with an optomechanical oscillator

Fenfei Liu, Seyedhamidreza Alaie, Zayd C. Leseman, and Mani Hossein-Zadeh
Opt. Express 21(17) 19555-19567 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  2. H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
    [Crossref]
  3. J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
    [Crossref]
  4. F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  5. S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
    [Crossref]
  6. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [Crossref]
  7. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
    [Crossref]
  8. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
    [Crossref]
  9. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
    [Crossref]
  10. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  11. W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Coherent optomechanical oscillation of a silica microsphere in an aqueous environment,” Opt. Express 22, 21421–21426 (2014).
    [Crossref]
  12. D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105, 071105 (2014).
    [Crossref]
  13. I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express 15, 17433–17442 (2007).
    [Crossref]
  14. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
    [Crossref]
  15. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
    [Crossref]
  16. S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
    [Crossref]
  17. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
    [Crossref]
  18. W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
    [Crossref]
  19. S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
    [Crossref]
  20. S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
    [Crossref]
  21. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
    [Crossref]
  22. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  23. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013).
    [Crossref]
  24. W. Yu, W. Jiang, Q. Lin, and T. Lu, “Single molecule detection with an optomechanical nanosensor,” in CLEO, OSA Technical Digest (Optical Society of America, 2015), paper AW3K.3.
  25. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [Crossref]
  26. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
    [Crossref]
  27. K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
    [Crossref]
  28. K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
    [Crossref]
  29. M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
    [Crossref]
  30. S. Putterman, “Acoustic levitation and the Boltzmann-Ehrenfest principle,” J. Acoust. Soc. Am. 85, 68–71 (1989).
    [Crossref]
  31. A. O. Santillan and V. Cutanda-Henríquez, “A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere,” J. Acoust. Soc. Am. 124, 2733–2741 (2008).
    [Crossref]
  32. S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).
  33. C. S. Kwiatkowski and P. L. Marston, “Resonator frequency shift due to ultrasonically induced microparticle migration in an aqueous suspension: observations and model for the maximum frequency shift,” J. Acoust. Soc. Am. 103, 3290–3300 (1998).
    [Crossref]
  34. K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
    [Crossref]

2015 (2)

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref]

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

2014 (10)

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
[Crossref]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Coherent optomechanical oscillation of a silica microsphere in an aqueous environment,” Opt. Express 22, 21421–21426 (2014).
[Crossref]

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105, 071105 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

2013 (5)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013).
[Crossref]

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

2012 (4)

S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

2011 (2)

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

2010 (1)

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

2009 (1)

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

2008 (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

A. O. Santillan and V. Cutanda-Henríquez, “A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere,” J. Acoust. Soc. Am. 124, 2733–2741 (2008).
[Crossref]

2007 (3)

1998 (1)

C. S. Kwiatkowski and P. L. Marston, “Resonator frequency shift due to ultrasonically induced microparticle migration in an aqueous suspension: observations and model for the maximum frequency shift,” J. Acoust. Soc. Am. 103, 3290–3300 (1998).
[Crossref]

1989 (1)

S. Putterman, “Acoustic levitation and the Boltzmann-Ehrenfest principle,” J. Acoust. Soc. Am. 85, 68–71 (1989).
[Crossref]

Alaie, S.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Arnold, S.

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105, 071105 (2014).
[Crossref]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Atsumi, H.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Babcock, K.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Bahl, G.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Belcher, A. M.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Bhatia, S. N.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Bryan, A. K.

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

Burg, T. P.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Carlson, G.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Carmon, T.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

Castro, C. M.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

Cermak, N.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref]

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Chen, C.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Chen, D.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Cho, S. H.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Christine, K. S.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Cutanda-Henríquez, V.

A. O. Santillan and V. Cutanda-Henríquez, “A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere,” J. Acoust. Soc. Am. 124, 2733–2741 (2008).
[Crossref]

Dale, P. S.

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Diez-Silva, M.

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

Eggleton, B. J.

Fan, X.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
[Crossref]

I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express 15, 17433–17442 (2007).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Foster, J. S.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Godin, J. M.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Godin, M.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Gohring, J.

Grover, W. H.

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Han, K.

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
[Crossref]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
[Crossref]

Hanay, M. S.

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

Harris, J. M.

S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).

He, L.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Higgins, J. M.

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Hossein-Zadeh, M.

Huang, S. H.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Im, H.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

Jiang, W.

W. Yu, W. Jiang, Q. Lin, and T. Lu, “Single molecule detection with an optomechanical nanosensor,” in CLEO, OSA Technical Digest (Optical Society of America, 2015), paper AW3K.3.

Jiang, W. C.

Kelber, S. I.

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

Keng, D.

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105, 071105 (2014).
[Crossref]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Kim, J. H.

Kim, K. H.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Knudsen, S. M.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Kwiatkowski, C. S.

C. S. Kwiatkowski and P. L. Marston, “Resonator frequency shift due to ultrasonically induced microparticle migration in an aqueous suspension: observations and model for the maximum frequency shift,” J. Acoust. Soc. Am. 103, 3290–3300 (1998).
[Crossref]

Lee, H.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Lee, J.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

Leseman, Z. C.

Li, H.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Li, Z.

S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).

Lin, Q.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Coherent optomechanical oscillation of a silica microsphere in an aqueous environment,” Opt. Express 22, 21421–21426 (2014).
[Crossref]

W. Yu, W. Jiang, Q. Lin, and T. Lu, “Single molecule detection with an optomechanical nanosensor,” in CLEO, OSA Technical Digest (Optical Society of America, 2015), paper AW3K.3.

Liu, F.

Liu, J.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Lo, Y.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Long, G. L.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Lu, T.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Coherent optomechanical oscillation of a silica microsphere in an aqueous environment,” Opt. Express 22, 21421–21426 (2014).
[Crossref]

W. Yu, W. Jiang, Q. Lin, and T. Lu, “Single molecule detection with an optomechanical nanosensor,” in CLEO, OSA Technical Digest (Optical Society of America, 2015), paper AW3K.3.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Manalis, S. R.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref]

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Marston, P. L.

C. S. Kwiatkowski and P. L. Marston, “Resonator frequency shift due to ultrasonically induced microparticle migration in an aqueous suspension: observations and model for the maximum frequency shift,” J. Acoust. Soc. Am. 103, 3290–3300 (1998).
[Crossref]

Monifi, F.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Mulvaney, P.

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

O’Connell, C. D.

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

Olcum, S.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref]

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

Ozdemir, S. K.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Pant, R.

Park, Y. I.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

Payer, K. R.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Peng, B.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Peterson, V. M.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

Poulton, C. G.

Putterman, S.

S. Putterman, “Acoustic levitation and the Boltzmann-Ehrenfest principle,” J. Acoust. Soc. Am. 85, 68–71 (1989).
[Crossref]

Qiao, W.

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Quan, Y.

S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).

Reddy, K.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

Roukes, M. L.

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

Sader, J. E.

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

Santillan, A. O.

A. O. Santillan and V. Cutanda-Henríquez, “A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere,” J. Acoust. Soc. Am. 124, 2733–2741 (2008).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shao, H.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

Shen, W.

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Sumetsky, M.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

Sun, Y.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

Suresh, S.

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

Suter, J. D.

Tan, X.

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105, 071105 (2014).
[Crossref]

Tomes, M.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Wang, S.

S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).

Wasserman, S. C.

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref]

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Weissleder, R.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

White, I. M.

Xiao, Y.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Yang, L.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Yang, X.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yilmaz, H.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yu, W.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Coherent optomechanical oscillation of a silica microsphere in an aqueous environment,” Opt. Express 22, 21421–21426 (2014).
[Crossref]

W. Yu, W. Jiang, Q. Lin, and T. Lu, “Single molecule detection with an optomechanical nanosensor,” in CLEO, OSA Technical Digest (Optical Society of America, 2015), paper AW3K.3.

Zhao, J.

S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhu, H.

Zhu, J.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Zhu, K.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (4)

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105, 014103 (2014).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011).
[Crossref]

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105, 071105 (2014).
[Crossref]

Biomicrofluidics (1)

S. H. Cho, J. M. Godin, C. Chen, W. Qiao, H. Lee, and Y. Lo, “Review article: recent advancements in optofluidic flow cytometer,” Biomicrofluidics 4, 043001 (2010).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014).
[Crossref]

J. Acoust. Soc. Am. (3)

S. Putterman, “Acoustic levitation and the Boltzmann-Ehrenfest principle,” J. Acoust. Soc. Am. 85, 68–71 (1989).
[Crossref]

A. O. Santillan and V. Cutanda-Henríquez, “A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere,” J. Acoust. Soc. Am. 124, 2733–2741 (2008).
[Crossref]

C. S. Kwiatkowski and P. L. Marston, “Resonator frequency shift due to ultrasonically induced microparticle migration in an aqueous suspension: observations and model for the maximum frequency shift,” J. Acoust. Soc. Am. 103, 3290–3300 (1998).
[Crossref]

J. Geophys. Res. (1)

S. Wang, J. Zhao, Z. Li, J. M. Harris, and Y. Quan, “Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range,” J. Geophys. Res. 117, B06203 (2012).

Light (1)

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light 2, e110 (2013).
[Crossref]

Nano Lett. (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Nat. Biotechnol. (1)

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).
[Crossref]

Nat. Commun. (2)

S. Olcum, N. Cermak, S. C. Wasserman, and S. R. Manalis, “High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions,” Nat. Commun. 6, 7070 (2015).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nat. Nanotechnol. (3)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

M. S. Hanay, S. I. Kelber, C. D. O’Connell, P. Mulvaney, J. E. Sader, and M. L. Roukes, “Inertial imaging with nanomechanical systems,” Nat. Nanotechnol. 10, 339–344 (2015).
[Crossref]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Nature (1)

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446, 1066–1069 (2007).
[Crossref]

Opt. Express (5)

Proc. Natl. Acad. Sci. (1)

S. Olcum, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhatia, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acad. Sci. 111, 1310–1315 (2014).
[Crossref]

Proc. Natl. Acad. Sci. USA (3)

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, “Measuring single-cell density,” Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011).
[Crossref]

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Other (1)

W. Yu, W. Jiang, Q. Lin, and T. Lu, “Single molecule detection with an optomechanical nanosensor,” in CLEO, OSA Technical Digest (Optical Society of America, 2015), paper AW3K.3.

Supplementary Material (2)

NameDescription
» Supplement 1: PDF (1446 KB)      Supplemental document
» Visualization 1: MP4 (11810 KB)      Live measurement

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Opto-mechano-fluidic resonators (OMFRs) and principle of long-range phonon-mediated sensing. (a) In the past, particle detection through the ultrahigh- Q whispering-gallery resonator was done either by perturbing the photon mode directly (upper figure), or by mass loading the optically induced phonon mode. Both methods require the binding of particles on the sensor. (b) High- Q photon and phonon modes are simultaneously confined at large-diameter points of the OMFR. The phonons mediate a long-range interaction between light and the analyte particles flowing deep within the microfluidic channel. (c) Thermal-mechanical fluctuations of the OMFR phonon modes coupled to the photonic resonance. The phonon mode spectrum is imprinted onto the scattered light and is affected by the presence or absence of the particle. Particle properties can be inferred from frequency and linewidth fluctuations with high throughput.

Fig. 2.
Fig. 2.

Experimental setup: Analytes are flowed through an OMFR using a syringe pump. A continuous-wave fiber-coupled ECDL is used to probe the high- Q optical whispering-gallery modes of the OMFR via the tapered optical fiber. A photodetector performs heterodyne measurements of the forward-scattered light, which is monitored using a real-time electronic spectrum analyzer (RSA). Perturbations of the vibrational phonon mode due to the particle thus can be tracked rapidly (see Visualization 1).

Fig. 3.
Fig. 3.

Optomechanical measurement of high-speed particle transits. (a) Real-time spectrogram (spectrum vs. time) of the phonon mode is recorded during transits of 6 μm melamine resin particles through a 55 μm diameter OMFR (see Visualization 1). The color intensity corresponds to the noise power spectral density. The lower figure more clearly shows the center frequency extracted from the spectrogram. (b) A similar dataset captured for 11 μm carboxyl magnetic polystyrene particles. Subfigures (a) and (b) are obtained with the same OMFR with phonon mode center frequency f o 30.18    MHz . (c) Phonon mode center-frequency traces captured for yeast cells (3 to 4 μm diameter) transiting through a 47 μm OMFR. The phonon frequency is f o 40.7    MHz . The * icon points out the rarer downward frequency shifts.

Fig. 4.
Fig. 4.

Characterizing frequency perturbation as a function of particle location. (a) Multiphysical finite-element model shows a phonon mode with an eigenfrequency of 30 MHz. This radial breathing mode of the shell results in a standing pressure wave pattern with a pressure maximum at the center of the OMFR and a pressure node at roughly 16 μm radial distance from the center. (b) The relationship between the phonon mode frequency shift and particle radial position for both 6 μm and 11 μm particles matches the shape of the standing pressure wave within the resonator. The particle position of each particle is subject to both the fitting error as shown by the error bar here and a roughly ± 2.5    μm error in determining the central axis of the OMFR independently (see Methods and Supplement 1). We note that the frequency shift is also subject to the size uncertainty of the particles, which is 2.5% for the 6 um particles and 7% for the 11 um particles. (c) The simulation results agree with the experimental data qualitatively, based on the fact that the presence of the particle modifies the kinetic and potential energy of the resonator differently at different radial positions (see Supplement 1).

Fig. 5.
Fig. 5.

High throughput, multi-mode sensing, and dissipation measurement: (a) A fast-flow measurement demonstrates a 20 ms timescale single-particle transit. (b) A spectrogram example showing simultaneous sensing of two phonon modes. The transits of three consecutive 6 μm particles (with the first two in middle of the OMFR and the last one near the capillary side wall) result in similar frequency shift patterns for both modes. The time delay indicates the differing spatial locations of the phonon modes. (c) and (d) Figures show the correlated fluctuations of phonon mode center frequency and dissipation rate, both derived from the real-time spectrogram data. The data presented have the same time axes as Figs. 4(b) and 4(c), depending on the case.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = f o 1 ρ s ρ l ρ s B 1 + κ s κ l κ l A ,
A = V s | p | 2 d V V c | p | 2 d V and B = V s | p | 2 d V k l 2 V c | p | 2 d V .

Metrics