Abstract

Long-distance quantum communication relies on the ability to efficiently generate and prepare single photons at telecom wavelengths. In many applications these photons must also be indistinguishable such that they exhibit interference on a beam splitter, which implements effective photon–photon interactions. However, deterministic generation of indistinguishable single photons with high brightness remains a challenging problem. We demonstrate two-photon interference at telecom wavelengths using an InAs/InP quantum dot in a nanophotonic cavity. The cavity enhances the quantum dot emission, resulting in a nearly Gaussian transverse mode profile with high outcoupling efficiency exceeding 36% after multiphoton correction. We also observe a Purcell enhanced spontaneous emission rate of up to 4. Using this source, we generate linearly polarized, high purity single photons at 1.3 μm wavelength and demonstrate the indistinguishable nature of the emission using a two-photon interference measurement, which exhibits indistinguishable visibilities of 18% without postselection and 67% with postselection. Our results provide a promising approach to generate bright, deterministic single photons at telecom wavelength for applications in quantum networking and quantum communication.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  2. D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
    [Crossref]
  3. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
    [Crossref]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  5. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300  km of fiber,” Opt. Express 21, 23241–23249 (2013).
    [Crossref]
  6. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
    [Crossref]
  7. K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
    [Crossref]
  8. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
    [Crossref]
  9. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
    [Crossref]
  10. F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
    [Crossref]
  11. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
    [Crossref]
  12. G.-C. Shan, Z.-Q. Yin, C. H. Shek, and W. Huang, “Single photon sources with single semiconductor quantum dots,” Front. Phys. 9, 170–193 (2014).
    [Crossref]
  13. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [Crossref]
  14. A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
    [Crossref]
  15. O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
    [Crossref]
  16. X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
    [Crossref]
  17. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
    [Crossref]
  18. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
    [Crossref]
  19. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
    [Crossref]
  20. J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
    [Crossref]
  21. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
    [Crossref]
  22. R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
    [Crossref]
  23. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
    [Crossref]
  24. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref]
  25. C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
    [Crossref]
  26. M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
    [Crossref]
  27. X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
    [Crossref]
  28. M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
    [Crossref]
  29. K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
    [Crossref]
  30. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
    [Crossref]
  31. Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
    [Crossref]
  32. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  33. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref]
  34. R. P. Leavitt and C. J. K. Richardson, “Pathway to achieving circular InAs quantum dots directly on (100) InP and to tuning their emission wavelengths toward 1.55  μm,” J. Vac. Sci. Technol. B 33, 051202 (2015).
    [Crossref]
  35. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
    [Crossref]
  36. R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett. 100, 231107 (2012).
    [Crossref]
  37. S. L. Portalupi, M. Galli, C. Reardon, T. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
    [Crossref]
  38. R. Oulton, B. Jones, S. Lam, A. Chalcraft, D. Szymanski, D. O’Brien, T. Krauss, D. Sanvitto, A. Fox, and D. Whittaker, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express 15, 17221–17230 (2007).
    [Crossref]
  39. K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
    [Crossref]
  40. J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
    [Crossref]
  41. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
    [Crossref]
  42. A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
    [Crossref]
  43. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [Crossref]
  44. J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, and P. A. Postigo, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
    [Crossref]
  45. P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
    [Crossref]
  46. H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
    [Crossref]
  47. P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15, 035027 (2013).
    [Crossref]
  48. C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).
  49. K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
    [Crossref]
  50. S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
    [Crossref]
  51. J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
    [Crossref]
  52. M. Fiorentino and F. N. Wong, “Deterministic controlled-NOT gate for single-photon two-qubit quantum logic,” Phys. Rev. Lett. 93, 070502 (2004).
    [Crossref]
  53. H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
    [Crossref]
  54. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  55. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
    [Crossref]
  56. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
    [Crossref]

2016 (3)

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

2015 (4)

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

R. P. Leavitt and C. J. K. Richardson, “Pathway to achieving circular InAs quantum dots directly on (100) InP and to tuning their emission wavelengths toward 1.55  μm,” J. Vac. Sci. Technol. B 33, 051202 (2015).
[Crossref]

H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
[Crossref]

2014 (4)

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

G.-C. Shan, Z.-Q. Yin, C. H. Shek, and W. Huang, “Single photon sources with single semiconductor quantum dots,” Front. Phys. 9, 170–193 (2014).
[Crossref]

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

2013 (10)

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300  km of fiber,” Opt. Express 21, 23241–23249 (2013).
[Crossref]

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

2012 (4)

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, and P. A. Postigo, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express 20, 7901–7914 (2012).
[Crossref]

A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
[Crossref]

R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett. 100, 231107 (2012).
[Crossref]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

2011 (2)

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

2010 (3)

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

S. L. Portalupi, M. Galli, C. Reardon, T. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref]

J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
[Crossref]

2009 (3)

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2008 (1)

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

2007 (5)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
[Crossref]

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

R. Oulton, B. Jones, S. Lam, A. Chalcraft, D. Szymanski, D. O’Brien, T. Krauss, D. Sanvitto, A. Fox, and D. Whittaker, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express 15, 17221–17230 (2007).
[Crossref]

2006 (2)

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

2005 (2)

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

2004 (6)

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
[Crossref]

M. Fiorentino and F. N. Wong, “Deterministic controlled-NOT gate for single-photon two-qubit quantum logic,” Phys. Rev. Lett. 93, 070502 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref]

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

2003 (3)

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref]

2002 (1)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Akahane, K.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Albrecht, S. M.

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

Alén, B.

Alexios, B.

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Alloing, B.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Almeida, M. P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Altepeter, J. B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Ana, P.

H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
[Crossref]

Andreani, L. C.

Anton, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Arakawa, Y.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Arnold, C.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Asobe, M.

Atatüre, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Ates, S.

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

Atkinson, P.

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Auffeves, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Bajcsy, M.

A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Bennett, A. J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Benyoucef, M.

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
[Crossref]

Birowosuto, M. D.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Boileau, J. C.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
[Crossref]

Bose, R.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett. 100, 231107 (2012).
[Crossref]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[Crossref]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Braun, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

Cai, T.

R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett. 100, 231107 (2012).
[Crossref]

Canet-Ferrer, J.

Carmele, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Chalcraft, A.

Chan, K. H. A.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Chang, H.-S.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

Chang, W.-H.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

Chen, J.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Chen, M. C.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Chen, W.-Y.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

Chyi, J.-I.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

Clausen, C.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

Collins, D.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

Daniel, F.

H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
[Crossref]

De Riedmatten, H.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref]

De Santis, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

de Vasconcellos, S. M.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Demory, J.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Diamanti, E.

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref]

Ding, X.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Dotor, M. L.

Duan, Z. C.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Dusanowski, L.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Englund, D.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Faraon, A.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Farrer, I.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Fiore, A.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Fiorentino, M.

M. Fiorentino and F. N. Wong, “Deterministic controlled-NOT gate for single-photon two-qubit quantum logic,” Phys. Rev. Lett. 93, 070502 (2004).
[Crossref]

Forchel, A.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Fox, A.

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Fuster, D.

Galli, M.

Galopin, E.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Gazzano, O.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Gerace, D.

Gerardino, A.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Giesz, V.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref]

Glenn, S.

H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
[Crossref]

Gokden, B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Gold, P.

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).

Gomez, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

González, L.

González, Y.

Gottesman, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
[Crossref]

Grange, T.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Gregersen, N.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

Gregor, W.

H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
[Crossref]

Gschrey, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Hadfield, R. H.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

He, Y.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

He, Y.-M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Heindel, T.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

Heldmaier, M.

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

Hirose, S.

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

Hofling, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Höfling, S.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Hornecker, G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Hsieh, T.-P.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

Hsu, T.-M.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

Huang, W.

G.-C. Shan, Z.-Q. Yin, C. H. Shek, and W. Huang, “Single photon sources with single semiconductor quantum dots,” Front. Phys. 9, 170–193 (2014).
[Crossref]

Hugo, Z.

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Hvam, J. M.

J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
[Crossref]

Inagaki, T.

Inoue, K.

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref]

Intallura, P. M.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Jahan, N. A.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

Jetter, M.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

Johansen, J.

J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
[Crossref]

Jones, B.

Jons, K.

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

Julsgaard, B.

J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
[Crossref]

Kaer, P.

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

Kamp, M.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).

Karimov, O. Z.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Kettler, J.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
[Crossref]

Kim, E.

A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Kim, H.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Knorr, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Kobayashi, N.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

Krauss, T.

Kumano, H.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

Kumar, P.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Kwon, S. H.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

Laflamme, R.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lam, S.

Lanco, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Lanzillotti Kimura, N. D.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Leavitt, R. P.

R. P. Leavitt and C. J. K. Richardson, “Pathway to achieving circular InAs quantum dots directly on (100) InP and to tuning their emission wavelengths toward 1.55  μm,” J. Vac. Sci. Technol. B 33, 051202 (2015).
[Crossref]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Lee, K. F.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

Lemaitre, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Lemaître, A.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Lermer, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

Li, L.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

Liu, X.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

Lodahl, P.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
[Crossref]

Loffler, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Löffler, A.

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

Loredo, J. C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Lu, C.-Y.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).

Lucamarini, M.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Lunghi, L.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Madsen, K. H.

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Maier, S.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Majumdar, A.

A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Marcikic, I.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Martínez, L. J.

Matsuda, N.

Matsuo, S.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Medic, M.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Michler, P.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
[Crossref]

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Misiewicz, J.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Miyazawa, T.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

Monat, C.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Mork, J.

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

Mrowinski, P.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Muller, M.

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

Muñoz-Matutano, G.

Munro, W. J.

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

Nambu, Y.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

Nemoto, K.

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

Nicolas, G.

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Nilsson, J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Notomi, M.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Nötzel, R.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Nowak, A.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

O’Brien, D.

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

O’Faolain, L.

Olivier, A.

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Oulton, R.

Pan, J.-W.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).

Pascal, B.

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Paul, M.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

Portalupi, S. L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

S. L. Portalupi, M. Galli, C. Reardon, T. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref]

Postigo, P. A.

Poulin, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
[Crossref]

Prieto, I.

Pryde, G. J.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Ralph, T. C.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Reardon, C.

Reithmaier, J. P.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
[Crossref]

Reitzenstein, S.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Richardson, C. J. K.

R. P. Leavitt and C. J. K. Richardson, “Pathway to achieving circular InAs quantum dots directly on (100) InP and to tuning their emission wavelengths toward 1.55  μm,” J. Vac. Sci. Technol. B 33, 051202 (2015).
[Crossref]

Ritchie, D. A.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Rodt, S.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Rudno-Rudzinski, W.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Rundquist, A.

A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
[Crossref]

Sagnes, I.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Sakuma, Y.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

Salter, C. L.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Sanvitto, D.

Sasaki, M.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

Schmidt, O.

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

Schnauber, P.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Schneider, C.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).

Schulze, J. H.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Sébastien, T.

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

See, P.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Seifried, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Sek, G.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Senellart, P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Shan, G.-C.

G.-C. Shan, Z.-Q. Yin, C. H. Shek, and W. Huang, “Single photon sources with single semiconductor quantum dots,” Front. Phys. 9, 170–193 (2014).
[Crossref]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Shek, C. H.

G.-C. Shan, Z.-Q. Yin, C. H. Shek, and W. Huang, “Single photon sources with single semiconductor quantum dots,” Front. Phys. 9, 170–193 (2014).
[Crossref]

Shen, T. C.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

Shields, A. J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
[Crossref]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Skiba-Szymanska, J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Solomon, G. S.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett. 100, 231107 (2012).
[Crossref]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Somaschi, N.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Somers, A.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Spekkens, R. W.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
[Crossref]

Spiller, T. P.

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

Sridharan, D.

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stevenson, R. M.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

Stobbe, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
[Crossref]

Strittmatter, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Suemune, I.

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

Sumikura, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Sylvain, F.

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Syperek, M.

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

Szymanski, D.

Tadanaga, O.

Takatsu, M.

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

Takemoto, K.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

Takesue, H.

Taniyama, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Thoma, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref]

Tobias, H.

H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
[Crossref]

Ulhaq, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Ulrich, S.

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

Ulrich, S. M.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Unsleber, S.

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Usuki, T.

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

van Veldhoven, P. J.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Vuckovic, J.

A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Waks, E.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett. 100, 231107 (2012).
[Crossref]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Ward, M. B.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Wei, Y.-J.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

White, A. G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Whittaker, D.

Wolters, J.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Wong, F. N.

M. Fiorentino and F. N. Wong, “Deterministic controlled-NOT gate for single-photon two-qubit quantum logic,” Phys. Rev. Lett. 93, 070502 (2004).
[Crossref]

Wu, D.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Yacob, M.

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
[Crossref]

Yamamoto, T.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Yeo, I.

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

Yin, Z.-Q.

G.-C. Shan, Z.-Q. Yin, C. H. Shek, and W. Huang, “Single photon sources with single semiconductor quantum dots,” Front. Phys. 9, 170–193 (2014).
[Crossref]

Yokoyama, N.

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

Yorozu, S.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

Yuan, Z. L.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Zbinden, H.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref]

Zeuner, K.

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Zinoni, C.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Zwiller, V.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

Appl. Phys. Lett. (8)

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. Li, A. Fiore, L. Lunghi, A. Gerardino, H. De Riedmatten, and H. Zbinden, “Time-resolved and antibunching experiments on single quantum dots at 1300  nm,” Appl. Phys. Lett. 88, 131102 (2006).
[Crossref]

M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, and P. Michler, “Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3  μm,” Appl. Phys. Lett. 106, 122105 (2015).
[Crossref]

X. Liu, K. Akahane, N. A. Jahan, N. Kobayashi, M. Sasaki, H. Kumano, and I. Suemune, “Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy,” Appl. Phys. Lett. 103, 061114 (2013).
[Crossref]

M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, “Telecom-wavelength (1.5  μm) single-photon emission from InP-based quantum dots,” Appl. Phys. Lett. 103, 162101 (2013).
[Crossref]

Ł. Dusanowski, M. Syperek, P. Mrowiński, W. Rudno-Rudziński, J. Misiewicz, A. Somers, S. Höfling, M. Kamp, J. P. Reithmaier, and G. Sęk, “Single photon emission at 1.55  μm from charged and neutral exciton confined in a single quantum dash,” Appl. Phys. Lett. 105, 021909 (2014).
[Crossref]

R. Bose, T. Cai, G. S. Solomon, and E. Waks, “All-optical tuning of a quantum dot in a coupled cavity system,” Appl. Phys. Lett. 100, 231107 (2012).
[Crossref]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3  μm,” Appl. Phys. Lett. 91, 161103 (2007).
[Crossref]

Front. Phys. (1)

G.-C. Shan, Z.-Q. Yin, C. H. Shek, and W. Huang, “Single photon sources with single semiconductor quantum dots,” Front. Phys. 9, 170–193 (2014).
[Crossref]

J. Appl. Phys. (1)

K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, and Y. Arakawa, “An optical horn structure for single-photon source using quantum dots at telecommunication wavelength,” J. Appl. Phys. 101, 081720 (2007).
[Crossref]

J. Vac. Sci. Technol. B (1)

R. P. Leavitt and C. J. K. Richardson, “Pathway to achieving circular InAs quantum dots directly on (100) InP and to tuning their emission wavelengths toward 1.55  μm,” J. Vac. Sci. Technol. B 33, 051202 (2015).
[Crossref]

Nano Lett. (1)

K. Jons, P. Atkinson, M. Muller, M. Heldmaier, S. Ulrich, O. Schmidt, and P. Michler, “Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots,” Nano Lett. 13, 126–130 (2013).
[Crossref]

Nat. Commun. (1)

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref]

Nat. Nanotechnol. (1)

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Nat. Photonics (8)

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7, 373–377 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3, 724–728 (2009).
[Crossref]

Nature (5)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

New J. Phys. (5)

F. Sylvain, A. Olivier, T. Sébastien, B. Pascal, B. Alexios, G. Nicolas, and Z. Hugo, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

H. Tobias, P. Ana, F. Daniel, S. Glenn, and W. Gregor, “Optimal excitation conditions for indistinguishable photons from quantum dots,” New J. Phys. 17, 123025 (2015).
[Crossref]

P. Kaer, N. Gregersen, and J. Mork, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15, 035027 (2013).
[Crossref]

Opt. Express (5)

Phys. Rev. B (3)

K. H. Madsen, S. Ates, J. Liu, A. Javadi, S. M. Albrecht, I. Yeo, S. Stobbe, and P. Lodahl, “Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity,” Phys. Rev. B 90, 155303 (2014).
[Crossref]

J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B 81, 081304 (2010).
[Crossref]

A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković, “Phonon-mediated coupling between quantum dots through an off-resonant microcavity,” Phys. Rev. B 85, 195301 (2012).
[Crossref]

Phys. Rev. Lett. (13)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004).
[Crossref]

S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref]

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004).
[Crossref]

M. Fiorentino and F. N. Wong, “Deterministic controlled-NOT gate for single-photon two-qubit quantum logic,” Phys. Rev. Lett. 93, 070502 (2004).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50  km of optical fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008).
[Crossref]

D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto, “Quantum teleportation with a quantum dot single photon source,” Phys. Rev. Lett. 92, 037904 (2004).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J. H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Sci. Rep. (2)

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120  km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref]

Other (1)

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan, and M. Kamp, “Single semiconductor quantum dots in microcavities: bright sources of indistinguishable photons,” arXiv:1502.00160 (2015).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1531 KB)      Supplemental-document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Scanning electron microscopy image of an air-suspended L3 photonic crystal cavity (scale bar is 2 μm) and (b) schematic of measurement setup. For single-photon measurement by using a fiber-coupled Hanbury-Brown and Twiss (HBT) setup, the parts of delay A and B and beam splitter [dotted boxes in (b)] are removed from the setup. For two-photon interference measurement by using a fiber-based Hong–Ou–Mandel (HOM) setup, two unbalanced Mach–Zehnder interferometers (dotted boxes) are inserted in both the excitation and emission paths. OL, HWP, PBS, TCSPC, and SMF represent objective lens, half-wave plate, polarizing beam splitter, time-correlated single-photon counter, and single-mode fiber, respectively. Blue SMF is a polarization-maintained SMF.

Fig. 2.
Fig. 2.

Cavity mode analysis of L3 photonic crystal. (a) Cavity emission spectrum showing several cavity modes labeled M1–M5. (b) Simulated electric field profiles ( | E | ) of the cavity modes M1–M5 shown in (a). (c) Simulated far-field patterns of modes M1, M3, and M4. x -dipole ( y -dipole) sources and | E x | 2 ( | E y | 2 ) components were used for far-field simulation of modes M3 and M4 (M1 mode). The white circle represents the collection angle θ = 45 ° , corresponding to the objective lens with NA = 0.7 .

Fig. 3.
Fig. 3.

Single-photon emission from the cavity-coupled single quantum dot. (a) Photoluminescence spectra of the quantum dots coupled to mode M3 (black line) and the bulk quantum dots outside of a photonic crystal structure (red line). For comparison, the intensity of the bulk quantum dots is multiplied by a factor of 10. (b) Second-order autocorrelation histogram of dot A under a 40 MHz pulsed excitation. Gray region and red line indicate a background level and a fitted curve of the correlation histogram.

Fig. 4.
Fig. 4.

(a) Decay curves of the cavity-coupled dot (blue solid dots) and the bulk dot (red open dots). Measured data are fitted by single exponential decay functions (solid lines). (b) Statistical distribution of lifetimes of individual cavity-coupled quantum dots. Red dotted line represents an average lifetime of bulk dots. Cavity mode M3 is shown in gray. (c) Photon count rates of dot A (blue solid dots) and the bulk dot (red open dots) as a function of excitation power. Solid lines are fitted curves for calculation of saturation intensity.

Fig. 5.
Fig. 5.

Two-photon interference measurement with Hong–Ou–Mandel setup for dot A. (a) Correlation histogram for parallel polarization. The five peaks, labeled 1–5, every 25 ns represent the detection of two photons passing through different paths in two unbalanced Mach–Zehnder interferometers. Each peak is filled by different colors. (b) Close-up of the center peak for parallel (solid dots) and orthogonal polarizations (open dots). Red lines are fitted curves, and the blue dashed line is a simulated curve with an infinitely fast detector. Gray region indicates a background level for the correlation histogram.

Fig. 6.
Fig. 6.

Polarization measurement for cavity-coupled dots. (a) Photoluminescence spectrum of quantum dot emission coupled modes M3 and M4. The dots are numbered 1–4. (b) Polarization angle scan of the cavity modes showing strong linear polarization. Modes M3 and M4 show polarization direction opposite to that of modes M1 and M5. (c) Polarization angle scan of the quantum dots coupled to modes M3 and M4. The quantum dots show the same polarization dependence as that of M3 and M4. (d) Polar plots of the emission intensities of M1, M3, and dot 1 in (b) and (c) as a function of the polarization angle. They all have strong linear polarization ratios, which are 0.93, 0.96, and 0.96 for M1, M3, and dot 1, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I max ( 1 e P P sat ) ,

Metrics