Abstract

We show that the long sought utilization of quantum mechanical phenomena for practical purposes is feasible by demonstrating the ability to control quantum coherent Rabi oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) with shaped light pulses. The experiments, confirmed by a comprehensive numerical calculation, reveal that linearly chirped ultrashort pulses, interacting coherently upon propagation with the short wavelength slope of the SOA gain spectrum, may enhance or suppress (depending on the chirp) the induced Rabi oscillations. This opens the door for many other experiments, inspired by fundamental quantum science, performed on practical platforms, that will turn quantum mechanical effects into applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature

Ouri Karni, Amir Capua, Gadi Eisenstein, Vitalii Sichkovskyi, Vitalii Ivanov, and Johann Peter Reithmaier
Opt. Express 21(22) 26786-26796 (2013)

Coherently driven semiconductor quantum dot at a telecommunication wavelength

Hiroyuki Takagi, Toshihiro Nakaoka, Katsuyuki Watanabe, Naoto Kumagai, and Yasuhiko Arakawa
Opt. Express 16(18) 13949-13954 (2008)

Controllable delay of ultrashort pulses in a quantum dot optical amplifier

Mike van der Poel, Jesper Mørk, and Jørn M. Hvam
Opt. Express 13(20) 8032-8037 (2005)

References

  • View by:
  • |
  • |
  • |

  1. M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
    [Crossref]
  2. S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment,” Phys. Rev. Lett. 100, 103004 (2008).
    [Crossref]
  3. Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
    [Crossref]
  4. C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
    [Crossref]
  5. R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
    [Crossref]
  6. I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
    [Crossref]
  7. A. J. Ramsay, “A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots,” Semicond. Sci. Technol. 25, 103001 (2010).
    [Crossref]
  8. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763–774 (2011).
    [Crossref]
  9. S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
    [Crossref]
  10. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
    [Crossref]
  11. P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
    [Crossref]
  12. A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in room-temperature semiconductors,” Phys. Rev. B 90, 045305 (2014).
    [Crossref]
  13. O. Karni, A. Capua, G. Eisenstein, and J. P. Reithmaier, “Rabi-oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifiers operating at room-temperature,” Opt. Express 21, 26786–26796 (2013).
    [Crossref]
  14. M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
    [Crossref]
  15. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
  16. A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrödinger framework,” IEEE J. Sel. Top. Quantum Electron. 19, 1–10 (2013).
    [Crossref]
  17. O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91, 115304 (2015).
    [Crossref]
  18. M. Renard, R. Chaux, B. Lavorel, and O. Faucher, “Pulse trains produced by phase-modulation of ultrashort optical pulses: tailoring and characterization,” Opt. Express 12, 473–482 (2004).
    [Crossref]
  19. E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
    [Crossref]
  20. D. Yelin, D. Meshulasch, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
    [Crossref]
  21. A. K. Mishra, O. Karni, and G. Eisenstein, “Coherent control in quantum dot gain media using shaped pulses: a numerical study,” Opt. Express 23, 29940–29953 (2015).
    [Crossref]
  22. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  23. J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
    [Crossref]
  24. O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
    [Crossref]
  25. A. J. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, “Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 μm,” J. Lightwave Technol. 26, 1498–1509 (2008).
    [Crossref]
  26. S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
    [Crossref]
  27. A. Debnath, C. Meier, B. Chatel, and T. Amand, “Chirped laser excitation of quantum dot excitons coupled to a phonon bath,” Phys. Rev. B 86, 161304 (2012).
    [Crossref]

2015 (3)

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91, 115304 (2015).
[Crossref]

A. K. Mishra, O. Karni, and G. Eisenstein, “Coherent control in quantum dot gain media using shaped pulses: a numerical study,” Opt. Express 23, 29940–29953 (2015).
[Crossref]

2014 (4)

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in room-temperature semiconductors,” Phys. Rev. B 90, 045305 (2014).
[Crossref]

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

2013 (3)

O. Karni, A. Capua, G. Eisenstein, and J. P. Reithmaier, “Rabi-oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifiers operating at room-temperature,” Opt. Express 21, 26786–26796 (2013).
[Crossref]

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrödinger framework,” IEEE J. Sel. Top. Quantum Electron. 19, 1–10 (2013).
[Crossref]

2012 (2)

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

A. Debnath, C. Meier, B. Chatel, and T. Amand, “Chirped laser excitation of quantum dot excitons coupled to a phonon bath,” Phys. Rev. B 86, 161304 (2012).
[Crossref]

2011 (3)

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763–774 (2011).
[Crossref]

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

2010 (1)

A. J. Ramsay, “A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots,” Semicond. Sci. Technol. 25, 103001 (2010).
[Crossref]

2008 (2)

2007 (1)

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref]

2006 (2)

J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
[Crossref]

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

2004 (1)

2002 (1)

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

1999 (1)

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

1997 (1)

Aitchison, J. S.

Amand, T.

A. Debnath, C. Meier, B. Chatel, and T. Amand, “Chirped laser excitation of quantum dot excitons coupled to a phonon bath,” Phys. Rev. B 86, 161304 (2012).
[Crossref]

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Axt, V. M.

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

Barrios, P.

Baumert, T.

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

Bayer, M.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Bayer, T.

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

Belhadj, T.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Bimberg, D.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

Borri, P.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

Brereton, P.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Capua, A.

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in room-temperature semiconductors,” Phys. Rev. B 90, 045305 (2014).
[Crossref]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrödinger framework,” IEEE J. Sel. Top. Quantum Electron. 19, 1–10 (2013).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, and J. P. Reithmaier, “Rabi-oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifiers operating at room-temperature,” Opt. Express 21, 26786–26796 (2013).
[Crossref]

Chang, Y. T.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Chatel, B.

A. Debnath, C. Meier, B. Chatel, and T. Amand, “Chirped laser excitation of quantum dot excitons coupled to a phonon bath,” Phys. Rev. B 86, 161304 (2012).
[Crossref]

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Chaux, R.

Cogan, D.

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

Collini, E.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Curmi, P. M. G.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Dalagarno, P. A.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Debnath, A.

A. Debnath, C. Meier, B. Chatel, and T. Amand, “Chirped laser excitation of quantum dot excitons coupled to a phonon bath,” Phys. Rev. B 86, 161304 (2012).
[Crossref]

Deppe, D.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Dilcher, E.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Dinshaw, R.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Don, Y.

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

Eastham, P. R.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Ediger, M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Eisenstein, G.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91, 115304 (2015).
[Crossref]

A. K. Mishra, O. Karni, and G. Eisenstein, “Coherent control in quantum dot gain media using shaped pulses: a numerical study,” Opt. Express 23, 29940–29953 (2015).
[Crossref]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in room-temperature semiconductors,” Phys. Rev. B 90, 045305 (2014).
[Crossref]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrödinger framework,” IEEE J. Sel. Top. Quantum Electron. 19, 1–10 (2013).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, and J. P. Reithmaier, “Rabi-oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifiers operating at room-temperature,” Opt. Express 21, 26786–26796 (2013).
[Crossref]

Faucher, O.

Feurer, T.

Fleming, G. R.

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763–774 (2011).
[Crossref]

Forchel, A.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Freisem, S.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Gamouras, A.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Gantz, L.

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

Gawarecki, K.

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

Gershoni, D.

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

Green, B. R.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Grodecka-Grad, A.

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

Hall, K. C.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Harrop, S. J.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Heinrichsdorff, F.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

Helmy, A. S.

Hepburn, J. W.

S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment,” Phys. Rev. Lett. 100, 103004 (2008).
[Crossref]

Hiller, R. G.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Hoef-Emden, K.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Hopkinson, M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Hugues, M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Hvam, J. M.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

Ivanov, V.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Kaptan, Y.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Karni, O.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91, 115304 (2015).
[Crossref]

A. K. Mishra, O. Karni, and G. Eisenstein, “Coherent control in quantum dot gain media using shaped pulses: a numerical study,” Opt. Express 23, 29940–29953 (2015).
[Crossref]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in room-temperature semiconductors,” Phys. Rev. B 90, 045305 (2014).
[Crossref]

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrödinger framework,” IEEE J. Sel. Top. Quantum Electron. 19, 1–10 (2013).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, and J. P. Reithmaier, “Rabi-oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifiers operating at room-temperature,” Opt. Express 21, 26786–26796 (2013).
[Crossref]

Kolarczik, M.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Korn, J.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Krebs, O.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Kuchar, K. J.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Kuhn, T.

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

Langbein, W.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

Lavorel, B.

Lemaitre, A.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Liese, D.

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

Lingnau, B.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Lüdge, K.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Lüker, S.

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

Machnikowski, P.

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

Malloy, K. J.

Mao, M.-H.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

Marie, X.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Mathew, R.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Meier, C.

A. Debnath, C. Meier, B. Chatel, and T. Amand, “Chirped laser excitation of quantum dot excitons coupled to a phonon bath,” Phys. Rev. B 86, 161304 (2012).
[Crossref]

Meier, J.

Menzel-Jones, C.

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref]

Meshulasch, D.

Mikhelashvili, V.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Milner, V.

S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment,” Phys. Rev. Lett. 100, 103004 (2008).
[Crossref]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref]

Mirkovic, T.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Mishra, A. K.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91, 115304 (2015).
[Crossref]

A. K. Mishra, O. Karni, and G. Eisenstein, “Coherent control in quantum dot gain media using shaped pulses: a numerical study,” Opt. Express 23, 29940–29953 (2015).
[Crossref]

Misiewicz, J.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Mojahedi, M.

Mørk, J.

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

Nelson, K. A.

Oblinsky, D. G.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Olaya-Castro, A.

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763–774 (2011).
[Crossref]

Owschimikow, N.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Phillips, R. T.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Piper, I. M.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Poitras, D.

Poole, P. J.

Präkelt, A.

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

Ramachandran, A.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Ramsay, A. J.

A. J. Ramsay, “A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots,” Semicond. Sci. Technol. 25, 103001 (2010).
[Crossref]

Reiter, D. E.

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

Reithmaier, J. P.

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91, 115304 (2015).
[Crossref]

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in room-temperature semiconductors,” Phys. Rev. B 90, 045305 (2014).
[Crossref]

O. Karni, A. Capua, G. Eisenstein, and J. P. Reithmaier, “Rabi-oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifiers operating at room-temperature,” Opt. Express 21, 26786–26796 (2013).
[Crossref]

Renard, M.

Renucci, P.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Rotter, T. J.

Sarpe-Tudoran, C.

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

Schmidgall, E. R.

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Scholes, G. D.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763–774 (2011).
[Crossref]

Schöll, E.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Schwartz, I.

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

Sek, G.

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

Shapiro, E. A.

S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment,” Phys. Rev. Lett. 100, 103004 (2008).
[Crossref]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref]

Shapiro, M.

S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment,” Phys. Rev. Lett. 100, 103004 (2008).
[Crossref]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref]

Silberberg, Y.

Simon, C.-M.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Smith, P. W. E.

Stintz, A.

Stone, K. W.

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

Urbaszek, B.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

van Grondelle, R.

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763–774 (2011).
[Crossref]

Vaughan, J. C.

Warburton, R. J.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Wilk, K. E.

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Woggon, U.

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Wollenhaupt, M.

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

Wu, Y.

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

Yang, C.

Yang, H. Y. S.

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

Yelin, D.

Zhdanovich, S.

S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment,” Phys. Rev. Lett. 100, 103004 (2008).
[Crossref]

Zielinski, M.

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

Zilkie, A. J.

Appl. Phys. Lett. (1)

O. Karni, K. J. Kuchar, A. Capua, V. Mikhelashvili, G. Sęk, J. Misiewicz, V. Ivanov, J. P. Reithmaier, and G. Eisenstein, “Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 104, 121104 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Capua, O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrödinger framework,” IEEE J. Sel. Top. Quantum Electron. 19, 1–10 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Chem. (1)

G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763–774 (2011).
[Crossref]

Nat. Commun. (1)

M. Kolarczik, N. Owschimikow, J. Korn, B. Lingnau, Y. Kaptan, D. Bimberg, E. Schöll, K. Lüdge, and U. Woggon, “Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,” Nat. Commun. 4, 2953 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, T. Bayer, and T. Baumert, “Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses,” Phys. Rev. A 73, 063409 (2006).
[Crossref]

Phys. Rev. B (8)

R. Mathew, E. Dilcher, A. Gamouras, A. Ramachandran, H. Y. S. Yang, S. Freisem, D. Deppe, and K. C. Hall, “Subpicosecond adiabatic rapid passage on a single semiconductor quantum dot: phonon-mediated dephasing in the strong-driving regime,” Phys. Rev. B 90, 035316 (2014).
[Crossref]

I. Schwartz, D. Cogan, E. R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, and D. Gershoni, “Deterministic coherent writing of long-lived semiconductor spin qubit using one ultrafast optical pulse,” Phys. Rev. B 92, 201201 (2015).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999).
[Crossref]

A. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Rabi oscillations and self-induced transparency in room-temperature semiconductors,” Phys. Rev. B 90, 045305 (2014).
[Crossref]

O. Karni, A. K. Mishra, G. Eisenstein, and J. P. Reithmaier, “Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities,” Phys. Rev. B 91, 115304 (2015).
[Crossref]

S. Lüker, K. Gawarecki, D. E. Reiter, A. Grodecka-Grad, V. M. Axt, P. Machnikowski, and T. Kuhn, “Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage,” Phys. Rev. B 85, 121302 (2012).
[Crossref]

A. Debnath, C. Meier, B. Chatel, and T. Amand, “Chirped laser excitation of quantum dot excitons coupled to a phonon bath,” Phys. Rev. B 86, 161304 (2012).
[Crossref]

Phys. Rev. Lett. (4)

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref]

S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment,” Phys. Rev. Lett. 100, 103004 (2008).
[Crossref]

Y. Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips, “Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage,” Phys. Rev. Lett. 106, 067401 (2011).
[Crossref]

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalagarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106, 166801 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

S. J. Harrop, K. E. Wilk, R. Dinshaw, E. Collini, T. Mirkovic, Y. T. Chang, D. G. Oblinsky, B. R. Green, K. Hoef-Emden, R. G. Hiller, G. D. Scholes, and P. M. G. Curmi, “Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light harvesting proteins,” Proc. Natl. Acad. Sci. U. S. A. 111, E2666 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Semicond. Sci. Technol. (1)

A. J. Ramsay, “A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots,” Semicond. Sci. Technol. 25, 103001 (2010).
[Crossref]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the experimental setup including the pulse-shaping system. (b) Bias-dependent electroluminescence spectra of the SOA, together with the spectrum of the excitation pulses used in the experiments.
Fig. 2.
Fig. 2. Input (left) and output (right) pulse envelopes for various QSP values. Solid blue plots show time-dependent intensity profiles, normalized relative to a uniform value. Dashed green curves show the profiles of instantaneous frequency deviations from the central pulse frequency.
Fig. 3.
Fig. 3. Output versus input pulse envelopes with different QSP levels and for varying input pulse energies. (a) QSP level of 0.25    ps 2 (left column) and + 0.25    ps 2 (right column). (b) QSP level of 0.4    ps 2 (left column) and + 0.4    ps 2 (right column). In both subfigures, in every column, the upper panels show the input envelopes, with time-dependent intensity in blue, and instantaneous frequency in dashed green. The middle panels show the output intensity profiles, and the bottom panels show the corresponding instantaneous frequency profiles. Abrupt features in the later profiles may show up whenever the intensity zeros, and hence they should not be referred to in the interpretation of the results.
Fig. 4.
Fig. 4. Output versus input pulse envelopes for a TL input pulse, for various input pulse energies. The upper panel shows the input envelope, with time-dependent intensity in blue, and instantaneous frequency in dashed green. The middle panel shows the output intensity profiles, and the bottom panel shows the corresponding instantaneous frequency profiles. Abrupt features in the later profiles may show up whenever the intensity approaches zero, and hence they should not be referred to in the interpretation of the results.
Fig. 5.
Fig. 5. Calculated output pulse shapes for the experimentally measured input pulse shapes with various input energies. Top row panels present time-dependent intensity profiles, while bottom row panels show the corresponding instantaneous frequency profiles. (a)  QSP = 0.25    ps 2 , (b) TL case: QSP = 0 , and (c)  QSP = + 0.25    ps 2 .
Fig. 6.
Fig. 6. Calculated snapshots of population inversion probability spectra in the SOA after 3, 4.5, and 7 ps of pulse propagation, for the three types of pulse shapes (shown in the left most column), with 650 pJ input energy. Top row: negatively chirped pulse with QSP = 0.25    ps 2 . Middle row: TL pulse with QSP = 0 . Bottom row: positively chirped pulse with QSP = + 0.25    ps 2 .

Metrics