Abstract

The perfect absorption of light in subwavelength thickness layers generally relies on exotic materials, metamaterials, or thick metallic gratings. Here we demonstrate that total light absorption can be achieved in ultrathin gratings composed of conventional materials, including relatively weakly absorbing semiconductors, which are compatible with optoelectronic applications such as photodetectors and optical modulators. We fabricate a 41 nm thick antimony sulphide grating structure that has a measured absorptance of A=99.3% at a visible wavelength of 591 nm, in excellent agreement with theory. We infer that the absorption within the grating is A=98.7%, with only A=0.6% within the silver mirror. A planar reference sample absorbs A=7.7% at this wavelength.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong absorption and selective emission from engineered metals with dielectric coatings

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman
Opt. Express 21(7) 9113-9122 (2013)

Analytical description of subwavelength plasmonic MIM resonators and of their combination

Charlie Koechlin, Patrick Bouchon, Fabrice Pardo, Jean-Luc Pelouard, and Riad Haïdar
Opt. Express 21(6) 7025-7032 (2013)

Electric and magnetic resonances in optical metamaterial for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells

Lin Cui, Ming-Yuan Huang, Yu-Meng You, Yu-Jun Zhang, Gao-Min Li, Shi-Lin Liu, and Chuan-Kun Liu
Opt. Mater. Express 6(5) 1480-1487 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [Crossref]
  2. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref]
  3. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
    [Crossref]
  4. K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
    [Crossref]
  5. W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. patentUS2599944 A (June10, 1952).
  6. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5  nm thick absorbing film,” Opt. Lett. 31, 2045–2047 (2006).
    [Crossref]
  7. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [Crossref]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [Crossref]
  10. C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10, 3135–3141 (2010).
    [Crossref]
  11. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
    [Crossref]
  12. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
    [Crossref]
  13. D. Maystre, “Diffraction gratings: an amazing phenomenon,” C. R. Phys. 14, 381–392 (2013).
    [Crossref]
  14. M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A 109, 769–773 (2012).
    [Crossref]
  15. M. K. Hedayati and M. Elbahri, “Perfect plasmonic absorber for visible frequency,” in 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (IEEE, 2013), vol. 1, pp. 259–261.
  16. Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
    [Crossref]
  17. G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).
  18. W. Li and N. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
    [Crossref]
  19. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref]
  20. S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
    [Crossref]
  21. www.physics.usyd.edu.au/emustack/ .
  22. K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
    [Crossref]
  23. B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
    [Crossref]
  24. L. N. Hadley and D. M. Dennison, “Reflection and transmission interference filters,” J. Opt. Soc. Am. 38, 483–492 (1948).
    [Crossref]
  25. R. Petit and G. Bouchitté, “On the properties of very thin metallic films in microwaves: the concept of an infinitely conducting and infinitely thin ohmic material revisited,” Proc. SPIE 1029, 54 (1989).
    [Crossref]
  26. L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H. Derrick, “Periodic models for thin optimal absorbers of electromagnetic radiation,” Phys. Rev. B 55, R16072(R) (1997).
    [Crossref]
  27. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
    [Crossref]
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).
  29. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [Crossref]
  30. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [Crossref]
  31. S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014).
    [Crossref]
  32. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  33. L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
    [Crossref]
  34. G. Bouchitté and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13–26 (1989).
    [Crossref]
  35. L. C. Botten, R. C. McPhedran, and G. W. Milton, “Perfectly conducting lamellar gratings: Babinet’s principle and circuit models,” J. Mod. Opt. 42, 2453–2473 (1995).
    [Crossref]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  37. When the dispersion relation of the TM mode remains close to the light line for all but very large transverse wavevectors, which are not excited by gratings with d∼λ.
  38. Consistent with the phases of the TE and TM Fresnel coefficients of a homogeneous interface at angles of incidence just beyond total internal reflection (equivalent transverse wavevector as BM1).

2016 (1)

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

2015 (1)

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

2014 (5)

W. Li and N. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014).
[Crossref]

2013 (1)

D. Maystre, “Diffraction gratings: an amazing phenomenon,” C. R. Phys. 14, 381–392 (2013).
[Crossref]

2012 (6)

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A 109, 769–773 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[Crossref]

2011 (2)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

2010 (3)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10, 3135–3141 (2010).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
[Crossref]

2006 (1)

1997 (1)

L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H. Derrick, “Periodic models for thin optimal absorbers of electromagnetic radiation,” Phys. Rev. B 55, R16072(R) (1997).
[Crossref]

1995 (1)

L. C. Botten, R. C. McPhedran, and G. W. Milton, “Perfectly conducting lamellar gratings: Babinet’s principle and circuit models,” J. Mod. Opt. 42, 2453–2473 (1995).
[Crossref]

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[Crossref]

1989 (2)

G. Bouchitté and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13–26 (1989).
[Crossref]

R. Petit and G. Bouchitté, “On the properties of very thin metallic films in microwaves: the concept of an infinitely conducting and infinitely thin ohmic material revisited,” Proc. SPIE 1029, 54 (1989).
[Crossref]

1981 (1)

L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1948 (1)

Adams, J.

L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

Andrewartha, J.

L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
[Crossref]

Apell, S. P.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10, 3135–3141 (2010).
[Crossref]

Asatryan, A. A.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Botten, L. C.

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[Crossref]

L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H. Derrick, “Periodic models for thin optimal absorbers of electromagnetic radiation,” Phys. Rev. B 55, R16072(R) (1997).
[Crossref]

L. C. Botten, R. C. McPhedran, and G. W. Milton, “Perfectly conducting lamellar gratings: Babinet’s principle and circuit models,” J. Mod. Opt. 42, 2453–2473 (1995).
[Crossref]

L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
[Crossref]

Bouchitté, G.

R. Petit and G. Bouchitté, “On the properties of very thin metallic films in microwaves: the concept of an infinitely conducting and infinitely thin ohmic material revisited,” Proc. SPIE 1029, 54 (1989).
[Crossref]

G. Bouchitté and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13–26 (1989).
[Crossref]

Bowen, P. T.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

Bradley, M. S.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Brongersma, M. L.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

Bulovic, V.

Byrne, M. A.

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Chen, X.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Collin, S.

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014).
[Crossref]

Craig, M.

L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
[Crossref]

Dai, N.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

de Sterke, C. M.

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[Crossref]

Dennison, D. M.

Derrick, G. H.

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
[Crossref]

L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H. Derrick, “Periodic models for thin optimal absorbers of electromagnetic radiation,” Phys. Rev. B 55, R16072(R) (1997).
[Crossref]

Dong, W.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

Dossou, K. B.

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[Crossref]

Elbahri, M.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A 109, 769–773 (2012).
[Crossref]

M. K. Hedayati and M. Elbahri, “Perfect plasmonic absorber for visible frequency,” in 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (IEEE, 2013), vol. 1, pp. 259–261.

Fan, S.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

Faupel, F.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A 109, 769–773 (2012).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Garca de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Hadley, L. N.

Hägglund, C.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10, 3135–3141 (2010).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A 109, 769–773 (2012).
[Crossref]

M. K. Hedayati and M. Elbahri, “Perfect plasmonic absorber for visible frequency,” in 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (IEEE, 2013), vol. 1, pp. 259–261.

Hoang, T. B.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

Huang, J.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

Hutley, M. C.

Jaramillo, T. F.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kasemo, B.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10, 3135–3141 (2010).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lawrence, F. J.

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

Li, W.

W. Li and N. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

MacDonald, K. F.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Magnusson, R.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[Crossref]

Maystre, D.

McPhedran, R. C.

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[Crossref]

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008).
[Crossref]

L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H. Derrick, “Periodic models for thin optimal absorbers of electromagnetic radiation,” Phys. Rev. B 55, R16072(R) (1997).
[Crossref]

L. C. Botten, R. C. McPhedran, and G. W. Milton, “Perfectly conducting lamellar gratings: Babinet’s principle and circuit models,” J. Mod. Opt. 42, 2453–2473 (1995).
[Crossref]

L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

Milton, G. W.

L. C. Botten, R. C. McPhedran, and G. W. Milton, “Perfectly conducting lamellar gratings: Babinet’s principle and circuit models,” J. Mod. Opt. 42, 2453–2473 (1995).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Nevière, M.

Nicorovici, N. A.

L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H. Derrick, “Periodic models for thin optimal absorbers of electromagnetic radiation,” Phys. Rev. B 55, R16072(R) (1997).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Petit, R.

R. Petit and G. Bouchitté, “On the properties of very thin metallic films in microwaves: the concept of an infinitely conducting and infinitely thin ohmic material revisited,” Proc. SPIE 1029, 54 (1989).
[Crossref]

G. Bouchitté and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13–26 (1989).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

Popov, E.

Poulton, C. G.

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Salisbury, W. W.

W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. patentUS2599944 A (June10, 1952).

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Smith, D. R.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Sturmberg, B. C. P.

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[Crossref]

Su, L.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

Sun, Y.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Tischler, J. R.

Valentine, N.

W. Li and N. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Wei, T.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

Zhang, J.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Zhang, K.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

Zheludev, N. I.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

ACS Photon. (2)

K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photon. 1, 235–240 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27, 8028–8034 (2015).

Appl. Opt. (1)

Appl. Phys. A (1)

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys. A 109, 769–773 (2012).
[Crossref]

Appl. Phys. Lett. (2)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[Crossref]

C. R. Phys. (1)

D. Maystre, “Diffraction gratings: an amazing phenomenon,” C. R. Phys. 14, 381–392 (2013).
[Crossref]

Comput. Phys. Commun. (1)

B. C. P. Sturmberg, K. B. Dossou, F. J. Lawrence, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method,” Comput. Phys. Commun. 202, 276–286 (2016).
[Crossref]

J. Mod. Opt. (1)

L. C. Botten, R. C. McPhedran, and G. W. Milton, “Perfectly conducting lamellar gratings: Babinet’s principle and circuit models,” J. Mod. Opt. 42, 2453–2473 (1995).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Nano Lett. (2)

W. Li and N. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10, 3135–3141 (2010).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Opt. Acta Int. J. Opt. (1)

L. C. Botten, M. Craig, R. C. McPhedran, J. Adams, and J. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta Int. J. Opt. 28, 413–428 (1981).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and G. H. Derrick, “Periodic models for thin optimal absorbers of electromagnetic radiation,” Phys. Rev. B 55, R16072(R) (1997).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref]

Proc. SPIE (1)

R. Petit and G. Bouchitté, “On the properties of very thin metallic films in microwaves: the concept of an infinitely conducting and infinitely thin ohmic material revisited,” Proc. SPIE 1029, 54 (1989).
[Crossref]

Radio Sci. (1)

G. Bouchitté and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13–26 (1989).
[Crossref]

Rep. Prog. Phys. (1)

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014).
[Crossref]

Sci. Rep. (1)

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4, 4850 (2014).
[Crossref]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref]

Other (7)

W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. patentUS2599944 A (June10, 1952).

www.physics.usyd.edu.au/emustack/ .

M. K. Hedayati and M. Elbahri, “Perfect plasmonic absorber for visible frequency,” in 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (IEEE, 2013), vol. 1, pp. 259–261.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

When the dispersion relation of the TM mode remains close to the light line for all but very large transverse wavevectors, which are not excited by gratings with d∼λ.

Consistent with the phases of the TE and TM Fresnel coefficients of a homogeneous interface at angles of incidence just beyond total internal reflection (equivalent transverse wavevector as BM1).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1455 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) TLA achieved by coherent illumination of a homogeneous film. (b) TLA achieved with a surface grating on a metal, which couples light into sideways propagating SPPs. (c) TLA in volume gratings occurs at different values of n because higher order grating modes propagate with a significant sideways component. (d) TLA in a one-port system is achieved by placing a mirror behind the absorber at a spacing that ensures the light incident from below is in phase with the light from above.

Fig. 2.
Fig. 2.

(a) An ultrathin layer in a symmetric background supports an even [line (i)], and an odd mode [line (ii)]. The symmetry of coherent perfect absorption allows the analysis to focus on one half of the Fabry–Perot etalon: (b) a homogeneous layer; (c) a lamellar grating. Marked are the definitions of the modal amplitudes ( a , b ) and their reflection and transmission coefficients ( r and t ), which in (b) are expressed in scattering matrices ( R , and T ).

Fig. 3.
Fig. 3.

Absorption of h = λ / 70 thick film as a function of n and n , when illuminated at normal incidence from both sides by in-phase light.

Fig. 4.
Fig. 4.

Absorption of h = λ / 70 thick gratings as a function of n and n , when illuminated at normal incidence from both sides by in-phase TE-polarized light. The grating parameters are fixed at d = 66 λ / 70 and f = 0.5 .

Fig. 5.
Fig. 5.

Absorption of h = λ / 70 thick gratings as a function of n and n , when illuminated at normal incidence from both sides by in-phase TM-polarized light. The grating parameters are fixed at d = 66 λ / 70 and f = 0.5 .

Fig. 6.
Fig. 6.

(a) Scanning electron micrograph at an angle of 45° of the Sb 2 S 3 grating structure with d = 388    nm etched groove width 97 nm (designed for TLA at λ = 605    nm ). (b) Focused ion beam cut cross-sectional view where individual layers and the grating are clearly distinguished and labeled. (c) Simulated Re ( E y ) at λ = 605    nm in this structure.

Fig. 7.
Fig. 7.

Reflectance of the fabricated gratings designed for TLA of TE-polarized light at λ = 591    nm (green) and λ = 605    nm (red) and the planar reference structure (blue). The measured values (triangles, circles, and squares, respectively) and simulated predictions (dashed, dotted–dashed, and solid curves) show excellent agreement, in particular in the vicinity of reflectance minima. The inset shows the simulated absorption in the Ag reflector below the grating optimized for λ = 591    nm .

Fig. 8.
Fig. 8.

Absorption as a function of Re ( ϵ ) h / λ and Im ( ϵ ) h / λ , where d and f have been optimized at each ϵ h / λ (colored contours). The dashed black curves indicate ϵ h / λ values of common materials at visible wavelengths between 350 nm (marked by circle) and 800 nm. In (a) the dashed curves correspond to h = λ / 30 layers of CdTe, InP, and GaAs (left to right), and h = 41 λ / 605 layers of Sb 2 S 3 (furthest right), while in (b) the curves show the values of h = λ / 20 layers of Cu, Au, and Ag (top to bottom). The values of our experimental demonstrations in Sb 2 S 3 at λ = 591    nm , 605 nm are marked as a magenta triangle and circle, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r = γ 2 ,
γ r γ b + γ t a = b ,
t γ b + r a 0 .
n = i m tan ( n k 0 h / 2 ) .
n i m λ π h + 1 3 m 2 ,
γ 1 t 01 a + γ 1 r 01 γ 0 c 0 + γ 1 r 11 γ 1 c 1 = c 1 .
det [ r 00 t 00 γ 0 t 10 γ 1 γ 0 t 00 γ 0 t 00 γ 0 1 γ 1 t 10 γ 0 γ 1 t 01 γ 1 t 01 γ 0 γ 1 t 11 γ 1 1 ] = 0 .

Metrics