Abstract

Quasi-phase-matched (QPM) wavelength converters are highly desirable for emerging nonlinear optics applications in photonic integrated circuits, but available waveguide and quasi-phase-matching technologies have so far constrained their realization. In this work, we present a periodically poled lithium niobate (LN) waveguide on a silicon nitride–thin film LN platform. It contains a submicrometer waveguide core for enhancing nonlinear interactions that is more than one order of magnitude smaller than those of previous QPM waveguides. Periodic poling was applied directly to the thin film LN for quasi-phase-matching by a new surface poling technology. We demonstrated 160%  W1·cm2 normalized efficiency for second harmonic generation at 1530 nm with ultralow propagation loss (0.3 dB/cm) in the telecom band. This highly efficient and compact wavelength converter has the potential for straightforward integration with various photonic platforms, e.g., on-chip microsystems such as optical communication networks, quantum storage, and optical frequency referencing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon

Ashutosh Rao, Marcin Malinowski, Amirmahdi Honardoost, Javed Rouf Talukder, Payam Rabiei, Peter Delfyett, and Sasan Fathpour
Opt. Express 24(26) 29941-29947 (2016)

Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2

Ashutosh Rao, Kamal Abdelsalam, Tracy Sjaardema, Amirmahdi Honardoost, Guillermo F. Camacho-Gonzalez, and Sasan Fathpour
Opt. Express 27(18) 25920-25930 (2019)

Second harmonic generation in nano-structured thin-film lithium niobate waveguides

Cheng Wang, Xiao Xiong, Nicolas Andrade, Vivek Venkataraman, Xi-Feng Ren, Guang-Can Guo, and Marko Lončar
Opt. Express 25(6) 6963-6973 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
    [Crossref]
  2. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
    [Crossref]
  3. J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
    [Crossref]
  4. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
    [Crossref]
  5. F. Généreux, C. Baldenberger, B. Bourliaguet, and R. Vallée, “Low-voltage tunable second-harmonic generation in an x-cut periodically poled lithium niobate waveguide,” Opt. Lett. 32, 1108–1110 (2007).
    [Crossref]
  6. L. Gui, “Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions,” Ph.D. thesis (University of Paderborn, 2010).
  7. S. P. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phase matching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [Crossref]
  8. N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9, 180–184 (2015).
    [Crossref]
  9. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  10. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [Crossref]
  11. W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40, 237–240 (2015).
    [Crossref]
  12. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
    [Crossref]
  13. R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22, 27733–27738 (2014).
    [Crossref]
  14. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
    [Crossref]
  15. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
    [Crossref]
  16. K. Mizuuchi, K. Yamamoto, and M. Kato, “Harmonic blue light generation in X-cut MgO:LiNbO3 waveguide,” Elect. Lett. 33, 806–807 (1997).
    [Crossref]
  17. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
    [Crossref]
  18. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
    [Crossref]
  19. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  20. L. Chen, A. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  21. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21, 25573–25581 (2013).
    [Crossref]
  22. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20, 4032–4038 (2012).
    [Crossref]
  23. www.photond.com .
  24. G. D. Miller, “Periodically poled lithium niobate: modelling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).
  25. S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8, 797–804 (1991).
    [Crossref]

2015 (5)

2014 (4)

2013 (1)

2012 (1)

2010 (1)

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

2009 (1)

2008 (1)

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

2007 (1)

2006 (1)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

2004 (1)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

2002 (1)

2001 (1)

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[Crossref]

1997 (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, “Harmonic blue light generation in X-cut MgO:LiNbO3 waveguide,” Elect. Lett. 33, 806–807 (1997).
[Crossref]

1991 (1)

Anderson, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

Arvidsson, G.

Asano, T.

Assion, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

Baldenberger, C.

Bourliaguet, B.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Brasch, V.

Bravo-Abad, J.

S. P. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phase matching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Chen, L.

Chiang, K. S.

Chiles, J.

Clausen, A. T.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Diziain, S.

Ellenbogen, T.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9, 180–184 (2015).
[Crossref]

Erasme, D.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Fathpour, S.

Fejer, M. M.

Frei, H.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

Fujimura, M.

Galili, M.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Geiss, R.

Généreux, F.

Gomez Agis, F.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Grange, R.

Grebing, C.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

Gui, L.

L. Gui, “Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions,” Ph.D. thesis (University of Paderborn, 2010).

Helmfrid, S.

Hendler, N.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9, 180–184 (2015).
[Crossref]

Herr, T.

Higurashi, E.

Hu, H.

Ichikawa, J.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Jeppesen, P.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Jin, J.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Jin, W.

Jost, J. D.

Kato, M.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Harmonic blue light generation in X-cut MgO:LiNbO3 waveguide,” Elect. Lett. 33, 806–807 (1997).
[Crossref]

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Kawanishi, T.

Keren-Zur, S.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9, 180–184 (2015).
[Crossref]

Khan, S.

Kippenberg, T. J.

Kitamura, K.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Kitaoka, Y.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[Crossref]

Kley, E. B.

Koke, S.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

Kuo, S. P.

S. P. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phase matching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Kurimura, S.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Kurz, J. R.

Lecaplain, C.

Ma, J.

Marsili, F.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Miller, G. D.

G. D. Miller, “Periodically poled lithium niobate: modelling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[Crossref]

K. Mizuuchi, K. Yamamoto, and M. Kato, “Harmonic blue light generation in X-cut MgO:LiNbO3 waveguide,” Elect. Lett. 33, 806–807 (1997).
[Crossref]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

Mulvad, H. C. H.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Nakajima, H.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Nam, S. W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Oblak, D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Oxenløwe, L. K.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Parameswaran, K. R.

Pertsch, T.

Pfeiffer, M. H. P.

Rabiei, P.

Reano, R. M.

Ricken, R.

Roussev, R. V.

Route, R. K.

Saglamyurek, E.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Saravi, S.

Schrempel, F.

Segal, N.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9, 180–184 (2015).
[Crossref]

Sergeyev, A.

Setzpfandt, F.

Shaw, M. D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Sohler, W.

Solomon, G. S.

S. P. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phase matching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Steinmeyer, G.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[Crossref]

Takigawa, R.

Tittel, W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Tünnermann, A.

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Vallée, R.

Verma, V. B.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Ware, C.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

Wood, M. G.

Xu, A.

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[Crossref]

K. Mizuuchi, K. Yamamoto, and M. Kato, “Harmonic blue light generation in X-cut MgO:LiNbO3 waveguide,” Elect. Lett. 33, 806–807 (1997).
[Crossref]

Appl. Phys. Lett. (1)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Elect. Lett. (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, “Harmonic blue light generation in X-cut MgO:LiNbO3 waveguide,” Elect. Lett. 33, 806–807 (1997).
[Crossref]

Electron. Lett. (1)

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640  Gbit/s clock recovery using periodically poled lithium niobate,” Electron. Lett. 44, 370–371 (2008).
[Crossref]

J. Appl. Phys. (1)

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Electric-field poling in Mg-doped LiNbO3,” J. Appl. Phys. 96, 6585–6590 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[Crossref]

Nat. Commun. (1)

S. P. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phase matching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Nat. Photonics (3)

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9, 180–184 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4, 462–465 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (3)

Other (4)

L. Gui, “Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions,” Ph.D. thesis (University of Paderborn, 2010).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

www.photond.com .

G. D. Miller, “Periodically poled lithium niobate: modelling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1240 KB)      Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Processing flow: (a)  x -cut LN on insulator (LNOI) on an LN substrate; (b) electrode deposition; (c) surface poling of the LN thin film; (d) electrode removal and SiN deposition; and (e) SiN etching to form a ridge waveguide; (f)  SiO 2 top cladding deposition.
Fig. 2.
Fig. 2. Waveguide structure and simulation: (a) schematic cross section of the device; (b) SEM image taken after the sample is polished and then dipped in BHF for 1 min to improve the contrast; (c) and (d) simulated fundamental TE mode profiles of the waveguide at 1550 and 775 nm, respectively; and (e) simulated effective waveguide area ( A eff ) for the fundamental TE mode at 775 and 1550 nm, and S eff between these two modes as a function of the SiN ridge width.
Fig. 3.
Fig. 3. (a)–(d) Schematic illustration of the evolution of inverted domain using a long poling pulse. (e)–(h) Schematic illustration of the evolution of inverted domains using multi-pulse waveforms with short pulse durations. (i) Schematic of cross section of the device obtained after ion milling to visualize the periodically poled region. (j) Top-view micrograph of the cross section of a poled device after 10 min 48% HF etch at room temperature. The dashed line corresponds to the cross section in which the bright part is the poled area. (k) SEM image of inverted domain.
Fig. 4.
Fig. 4. PPLN waveguide characterized as a wavelength converter using SHG: (a) normalized efficiency as a function of the pump wavelength; and (b) peak generated SH power under different pump powers (red crosses), compared to theoretical predictions from (S7), assuming η nor = 160 %    W 1 · cm 2 .

Metrics