Abstract

The analysis of chemical species is one of the most fundamental and long-standing challenges in fiber-optic sensors research. Existing sensor architectures require a spatial overlap between light and the substance being tested and rely either on structural modifications of standard fibers or on specialty photonic crystal fibers. In this work, we report an optomechanical fiber sensor that addresses liquids outside the cladding of standard, 8/125 μm single-mode fibers with no structural intervention. Measurements are based on forward stimulated Brillouin scattering by radial, guided acoustic modes of the fiber structure. The acoustic modes are stimulated by an optical pump pulse and probed by an optical signal wave, both confined to the core. The acoustic vibrations induce a nonreciprocal phase delay to the signal wave, which is monitored in a Sagnac interferometer loop configuration. The measured resonance frequencies and excitation strengths of individual modes agree with the predictions of a corresponding quantitative analysis. The acoustic reflectivity at the outer cladding boundary and the acoustic impedance of the surrounding medium are extracted from cavity lifetime measurements of multiple modes. The acoustic impedances of deionized water and ethanol are measured with better than 1% accuracy. The measurements successfully distinguish between aqueous solutions with 0, 4%, 8%, and 12% concentrations of dissolved salt. The new fiber-sensing paradigm might be used in the monitoring of industrial processes involving ionic solutions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers

Neisei Hayashi, Yosuke Mizuno, Kentaro Nakamura, Sze Yun Set, and Shinji Yamashita
Opt. Express 25(3) 2239-2244 (2017)

Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber

Desmond M. Chow and Luc Thévenaz
Opt. Lett. 43(21) 5467-5470 (2018)

Opto-mechanical inter-core cross-talk in multi-core fibers

H. Hagai Diamandi, Yosef London, and Avi Zadok
Optica 4(3) 289-297 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw and J. Dakin, Optical Fiber Sensors: Principles and Components (Artech House, 1988).
  2. E. Udd and W. B. Spillman, eds., Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (Wiley, 2011).
  3. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
    [Crossref]
  4. K. T. V. Grattan and B. T. Meggit, eds., Optical Fiber Sensor Technology, Vol. 4 of Chemical and Environmental Sensing (Kluwer Academic, 2010).
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004).
    [Crossref]
  6. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
    [Crossref]
  7. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
    [Crossref]
  8. I. Dicaire, A. De Rossi, S. Combrié, and L. Thévenaz, “Probing molecular absorption under slow-light propagation using a photonic crystal waveguide,” Opt. Lett. 37, 4934–4936 (2012).
    [Crossref]
  9. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [Crossref]
  10. J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
    [Crossref]
  11. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [Crossref]
  12. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
    [Crossref]
  13. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
    [Crossref]
  14. E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
    [Crossref]
  15. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16, 2252–2263 (2008).
    [Crossref]
  16. E. Preter, R. A. Katims, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring and analysis of pendant droplets evaporation using bare and monolayer-coated optical fiber facets,” Opt. Mater. Express 4, 903–915 (2014).
    [Crossref]
  17. M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
    [Crossref]
  18. S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
    [Crossref]
  19. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
    [Crossref]
  20. K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).
  21. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  22. A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” Quantum Electron. 32, 765–775 (2002).
    [Crossref]
  23. P. St.J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
    [Crossref]
  24. P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
    [Crossref]
  25. M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
    [Crossref]
  26. J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, “FSBS resonances observed in standard highly nonlinear fiber,” Opt. Express 19, 5339–5349 (2011).
    [Crossref]
  27. E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
    [Crossref]
  28. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [Crossref]
  29. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref]
  30. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [Crossref]
  31. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
    [Crossref]
  32. M. I. Aralaguppi, C. V. Jadar, and T. M. Aminabhavi, “Density, viscosity, refractive index, and speed of sound in binary mixtures of acrylonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol, and butan-2-ol,” J. Chem. Eng. Data 44, 216–221 (1999).
    [Crossref]
  33. A. Puttmer, P. Hauptmann, and B. Henning, “Ultrasonic density sensor for liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 85–92 (2000).
    [Crossref]
  34. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelts, “Measurements of timing jitter in filter-guided soliton transmission at 10 Gbit/s and achievement of a 375  Gbit/s-Mm, error-free, at 12.5 and 15  Gbit/s,” Opt. Lett. 19, 704–706 (1994).
    [Crossref]
  35. Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
    [Crossref]
  36. T. Matsui, K. Nakajima, T. Sakamoto, K. Shiraki, and I. Sankawa, “Structural dependence of guided acoustic-wave Brillouin scattering spectral in hole-assisted fiber and its temperature dependence,” Appl. Opt. 46, 6912–6917 (2007).
    [Crossref]
  37. E. Carry, J.-C. Beugnot, B. Stiller, M. W. Lee, H. Maillotte, and T. Sylvestre, “Temperature coefficient of the high-frequency guided acoustic mode in a photonic crystal fiber,” Appl. Opt. 50, 6543–6547 (2011).
    [Crossref]
  38. Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
    [Crossref]
  39. B. Auld, Acoustic Fields and Waves in Solids (Krieger, 1990), Vol. 2.
  40. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, 2005).
  41. Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).
  42. A. J. Poustie, “Bandwidth and mode intensities of guided acoustic-wave Brillouin scattering in optical fibers,” J. Opt. Soc. Am. B 10, 691–696 (1993).
    [Crossref]

2016 (1)

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

2015 (3)

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref]

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).

2014 (1)

2013 (3)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

2012 (1)

2011 (2)

2009 (5)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
[Crossref]

2008 (4)

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16, 2252–2263 (2008).
[Crossref]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

2007 (1)

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

2004 (1)

2003 (3)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[Crossref]

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

2002 (1)

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” Quantum Electron. 32, 765–775 (2002).
[Crossref]

2000 (1)

A. Puttmer, P. Hauptmann, and B. Henning, “Ultrasonic density sensor for liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 85–92 (2000).
[Crossref]

1999 (3)

M. I. Aralaguppi, C. V. Jadar, and T. M. Aminabhavi, “Density, viscosity, refractive index, and speed of sound in binary mixtures of acrylonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol, and butan-2-ol,” J. Chem. Eng. Data 44, 216–221 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

1998 (1)

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

1994 (1)

1993 (1)

1991 (1)

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

1990 (1)

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Aminabhavi, T. M.

M. I. Aralaguppi, C. V. Jadar, and T. M. Aminabhavi, “Density, viscosity, refractive index, and speed of sound in binary mixtures of acrylonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol, and butan-2-ol,” J. Chem. Eng. Data 44, 216–221 (1999).
[Crossref]

Antman, Y.

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).

Aralaguppi, M. I.

M. I. Aralaguppi, C. V. Jadar, and T. M. Aminabhavi, “Density, viscosity, refractive index, and speed of sound in binary mixtures of acrylonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol, and butan-2-ol,” J. Chem. Eng. Data 44, 216–221 (1999).
[Crossref]

Artel, V.

E. Preter, R. A. Katims, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring and analysis of pendant droplets evaporation using bare and monolayer-coated optical fiber facets,” Opt. Mater. Express 4, 903–915 (2014).
[Crossref]

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

Auld, B.

B. Auld, Acoustic Fields and Waves in Solids (Krieger, 1990), Vol. 2.

Bahl, G.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Beugnot, J.-C.

Biryukov, A. S.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” Quantum Electron. 32, 765–775 (2002).
[Crossref]

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Carmon, T.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Carry, E.

Chen, H. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Chiang, K. S.

Cho, K. M.

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

Choi, M.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref]

Chow, D.

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

Combrié, S.

Culshaw, B.

B. Culshaw and J. Dakin, Optical Fiber Sensors: Principles and Components (Artech House, 1988).

Culverhouse, D.

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

Dakin, J.

B. Culshaw and J. Dakin, Optical Fiber Sensors: Principles and Components (Artech House, 1988).

De Rossi, A.

Dianov, E. M.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” Quantum Electron. 32, 765–775 (2002).
[Crossref]

Dicaire, I.

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

I. Dicaire, A. De Rossi, S. Combrié, and L. Thévenaz, “Probing molecular absorption under slow-light propagation using a photonic crystal waveguide,” Opt. Lett. 37, 4934–4936 (2012).
[Crossref]

Donlagic, D.

E. Preter, R. A. Katims, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring and analysis of pendant droplets evaporation using bare and monolayer-coated optical fiber facets,” Opt. Mater. Express 4, 903–915 (2014).
[Crossref]

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

Eggleton, B. J.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

Fan, X.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

Farahi, F.

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

Gathe, M. C.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Gauthier, D. J.

Gheysens, T.

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Hahn, S. K.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Hansen, T.

Hauptmann, P.

A. Puttmer, P. Hauptmann, and B. Henning, “Ultrasonic density sensor for liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 85–92 (2000).
[Crossref]

Henning, B.

A. Puttmer, P. Hauptmann, and B. Henning, “Ultrasonic density sensor for liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 85–92 (2000).
[Crossref]

Hey Tow, K.

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Humar, M.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref]

Jadar, C. V.

M. I. Aralaguppi, C. V. Jadar, and T. M. Aminabhavi, “Density, viscosity, refractive index, and speed of sound in binary mixtures of acrylonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol, and butan-2-ol,” J. Chem. Eng. Data 44, 216–221 (1999).
[Crossref]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[Crossref]

Jyu, S. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Kang, M. S.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Kang, S. W.

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

Kaplan, D. L.

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

Katims, R. A.

Kim, E. S.

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

Kim, K. H.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Kim, K. S.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Kim, S.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref]

Kim, S. H.

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

Kuhlmey, B. T.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[Crossref]

Lee, M. W.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Liao, X.

Lin, S. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Lin, Y. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Liu, J.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Liu, W. F.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Liu, W. J.

London, Y.

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Ludvigsen, H.

Maillotte, H.

Maleki, L.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Mamyshev, P. V.

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Matsui, T.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Mollenauer, L. F.

Nakajima, K.

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Neubelts, M. J.

Nizamoglu, S.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Ogusu, K.

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

Omenetto, F. G.

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

Peral, E.

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

Petersen, J.

Poustie, A. J.

Preloznik, B.

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

Preter, E.

E. Preter, R. A. Katims, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring and analysis of pendant droplets evaporation using bare and monolayer-coated optical fiber facets,” Opt. Mater. Express 4, 903–915 (2014).
[Crossref]

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

Puttmer, A.

A. Puttmer, P. Hauptmann, and B. Henning, “Ultrasonic density sensor for liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 85–92 (2000).
[Crossref]

Ran, Z. L.

Randolph, M.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Rao, Y. J.

Redmond, R. W.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Ritari, T.

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

Sakamoto, T.

Sankawa, I.

Scarcelli, G.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

Seo, G. W.

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Shiraki, K.

Simonsen, H.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Sørensen, T.

St.J. Russell, P.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

Stiller, B.

Sukenik, C. N.

E. Preter, R. A. Katims, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring and analysis of pendant droplets evaporation using bare and monolayer-coated optical fiber facets,” Opt. Mater. Express 4, 903–915 (2014).
[Crossref]

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

Sukharev, M. E.

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” Quantum Electron. 32, 765–775 (2002).
[Crossref]

Sylvestre, T.

Tanaka, Y.

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[Crossref]

Thévenaz, L.

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

I. Dicaire, A. De Rossi, S. Combrié, and L. Thévenaz, “Probing molecular absorption under slow-light propagation using a photonic crystal waveguide,” Opt. Lett. 37, 4934–4936 (2012).
[Crossref]

Tien, C. L.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Tomes, M.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Tuominen, J.

Vollrath, F.

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

Wang, J.

Wu, D. K. C.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

Yoon, J.-K.

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

Yun, S. H.

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref]

Zadok, A.

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).

E. Preter, R. A. Katims, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring and analysis of pendant droplets evaporation using bare and monolayer-coated optical fiber facets,” Opt. Mater. Express 4, 903–915 (2014).
[Crossref]

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

Zhang, R.

Zhu, Y.

Adv. Mater. (1)

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Electron. Lett. (1)

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195–1196 (1990).
[Crossref]

IEEE J. Quantum Electron. (2)

P. St.J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated Brillouin scattering in dual-mode single-core fibers,” IEEE J. Quantum Electron. 27, 836–842 (1991).
[Crossref]

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 10, 1769–1771 (1998).
[Crossref]

J.-K. Yoon, G. W. Seo, K. M. Cho, E. S. Kim, S. H. Kim, and S. W. Kang, “Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer,” IEEE Photon. Technol. Lett. 15, 837–839 (2003).
[Crossref]

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photon. Technol. Lett. 11, 865–867 (1999).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Puttmer, P. Hauptmann, and B. Henning, “Ultrasonic density sensor for liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 85–92 (2000).
[Crossref]

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St.J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[Crossref]

J. Chem. Eng. Data (1)

M. I. Aralaguppi, C. V. Jadar, and T. M. Aminabhavi, “Density, viscosity, refractive index, and speed of sound in binary mixtures of acrylonitrile with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol, and butan-2-ol,” J. Chem. Eng. Data 44, 216–221 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2, e110 (2013).
[Crossref]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[Crossref]

Nat. Commun. (2)

S. Nizamoglu, M. C. Gathe, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Nat. Photonics (1)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

Nat. Phys. (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Phys. Rev. Lett. (2)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref]

Proc. SPIE (2)

K. Hey Tow, D. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” Proc. SPIE 9634, 96347D (2015).

Y. Antman, Y. London, and A. Zadok, “Scanning-free characterization of temperature dependence of forward stimulated Brillouin scattering resonances,” Proc. SPIE 9634, 96345C (2015).

Quantum Electron. (1)

A. S. Biryukov, M. E. Sukharev, and E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibers,” Quantum Electron. 32, 765–775 (2002).
[Crossref]

Sensors (1)

E. Preter, B. Preloznik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors 13, 15261–15273 (2013).
[Crossref]

Thin Solid Films (1)

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516, 5360–5363 (2008).
[Crossref]

Other (5)

K. T. V. Grattan and B. T. Meggit, eds., Optical Fiber Sensor Technology, Vol. 4 of Chemical and Environmental Sensing (Kluwer Academic, 2010).

B. Culshaw and J. Dakin, Optical Fiber Sensors: Principles and Components (Artech House, 1988).

E. Udd and W. B. Spillman, eds., Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (Wiley, 2011).

B. Auld, Acoustic Fields and Waves in Solids (Krieger, 1990), Vol. 2.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, 2005).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1454 KB)      Supplementary mathematical analysis

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Solid blue lines: illustration of the dispersion relation between the axial wavenumbers q z and frequencies f of radial acoustic modes in standard optical fibers. Modal cut-off frequencies are denoted by f 0 , m . Dashed red line: schematic illustration of the dispersion relation of the optical mode of the fiber. The refractive index of the optical mode is noted by n . Intersection points represent frequencies f m f 0 , m of acoustic radial modes that can couple between two co-propagating optical waves of frequencies ν 1 and ν 2 = ν 1 + f m and corresponding wavenumbers k 1 and k 2 = k 1 + q z , m [see panel (b)].
Fig. 2.
Fig. 2. Illustrations of the acoustic density variations profile Δ ρ as a function of transverse coordinates x , y , following stimulation by a short pump pulse that is confined to the core of a standard fiber. The black lines mark the outer boundary of the fiber cladding. The density fluctuations are linear combinations of the transverse profiles Δ ρ 0 , m ( x , y ) of individual radial modes R 0 , m oscillating at respective frequencies f 0 , m . Panels (a)–(f) present Δ ρ at different instances, noted above each panel. Acoustic impulses form across the core of the fiber at intervals of t r 20.83    ns .
Fig. 3.
Fig. 3. Schematic illustration of the experimental setup used in the stimulation and probing of radial guided acoustic modes in standard fibers. SOA, semiconductor optical amplifier; EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; EOM, electro-optic modulator.
Fig. 4.
Fig. 4. (a) Measured power of the signal wave as a function of time at the output of the Sagnac interferometer loop. The fiber under test was stripped of its polymer coating and kept exposed in the air. (b) Magnified view of panel (a) in its first 200 ns. A decaying sequence of impulses, separated by t r 20.83    ns , is observed. (c) Power spectral density of the measured output signal trace. The spectrum consists of a series of discrete modes whose frequencies match the cut-off frequencies of the radial acoustic modes (see Table 1). (d) Measurement and calculation of the peak power spectral density in each mode.
Fig. 5.
Fig. 5. (a) Measured power of the signal wave with the fiber under test immersed in deionized water (blue) and ethanol (red). (b) Measured oscillations of acoustic mode R 0,5 at 226 MHz, obtained by digital filtering of the traces of panel (a). Time scale in ns. (c) Experimentally obtained lifetimes of radial acoustic modes m = 3 through 11, with the fiber under test in air (black line), water (blue line), and ethanol (red line). (d) Measured oscillations of acoustic mode R 0,5 at 226 MHz with the fiber under test in air, obtained by digital filtering of the trace of Fig. 4(a). Time scale in ns.
Fig. 6.
Fig. 6. (a) Solid lines: measured acoustic impedances of deionized water (blue) and ethanol (red) as a function of the frequency of acoustic radial modes. Dashed lines: corresponding reference acoustic impedance values [36]. (b) Measured acoustic impedances of solutions of deionized water as a function of the frequency of acoustic radial modes. Colors denote aqueous solutions with dissolved NaCl at relative weight ratios of 0, 4%, 8%, and 12% (see legend).

Tables (2)

Tables Icon

Table 1. Measured and Calculated Frequencies and Relative Peak Power Spectral Densities of Guided Radial Acoustic Modes in a Standard Fiber

Tables Icon

Table 2. Measured Acoustic Impedance of Liquids Under Test and Corresponding Reference Values [in Units of 1 e 6    kg / ( m 2 s ) ]

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( 1 α 2 ) J 0 ( ξ ) = α 2 J 2 ( ξ ) ,
Δ ρ 0 , m ( r ) = J 0 ( ξ m r / a ) .
| r mir | = | Z f Z o | / ( Z f + Z o ) .
1 τ m = 1 τ int , m + 1 τ mir = 1 τ int , m + 1 t r ln ( 1 | r mir | ) .
| r mir | = exp ( τ int , m τ m τ int , m · τ m t r ) .

Metrics