Abstract

The power consumption of a conventional photoreceiver is dominated by that of the electric amplifier connected to the photodetector (PD). An ultralow-capacitance PD can overcome this limitation, because it can generate sufficiently large voltage without an amplifier when combined with a high-impedance load. In this work, we demonstrate an ultracompact InGaAs PD based on a photonic crystal waveguide with a length of only 1.7 μm and a capacitance of less than 1 fF. Despite the small size of the device, a high responsivity of 1 A/W and a clear 40 Gbit/s eye diagram are observed, overcoming the conventional trade-off between size and responsivity. A resistor-loaded PD was actually fabricated for light-to-voltage conversion, and a kilo-volt/watt efficiency with a gigahertz bandwidth even without amplifiers was measured with an electro-optic probe. Combined experimental and theoretical results reveal that a bandwidth in excess of 10 GHz can be expected, leading to an ultralow energy consumption of less than 1 fJ/bit for the photoreceiver. Amplifier-less PDs with attractive performance levels are therefore feasible and a step toward a densely integrated photonic network/processor on a chip.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure

Kengo Nozaki, Shinji Matsuo, Koji Takeda, Tomonari Sato, Eiichi Kuramochi, and Masaya Notomi
Opt. Express 21(16) 19022-19028 (2013)

Study of a slow-light-enhanced membrane photodetector for realizing on-chip interconnection with low power consumption

Zhichen Gu, Takuo Hiratani, Tomohiro Amemiya, Nobuhiko Nishiyama, and Shigehisa Arai
J. Opt. Soc. Am. B 34(2) 440-446 (2017)

On-chip membrane-based GaInAs/InP waveguide-type p-i-n photodiode fabricated on silicon substrate

Zhichen Gu, Tatsuya Uryu, Nagisa Nakamura, Daisuke Inoue, Tomohiro Amemiya, Nobuhiko Nishiyama, and Shigehisa Arai
Appl. Opt. 56(28) 7841-7848 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
    [Crossref]
  2. X. Z. Zheng, D. Patil, J. Lexau, F. Liu, G. L. Li, H. Thacker, Y. Luo, I. Shubin, J. D. Li, J. Yao, P. Dong, D. Z. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10  Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19, 5172–5186 (2011).
    [Crossref]
  3. S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
    [Crossref]
  4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  5. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).
  6. T. K. Woodward and A. V. Krishnamoorthy, “1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies,” IEEE J. Sel. Top. Quantum Electron. 5, 146–156 (1999).
    [Crossref]
  7. T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
    [Crossref]
  8. C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
    [Crossref]
  9. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
    [Crossref]
  10. K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
    [Crossref]
  11. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45  GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
    [Crossref]
  12. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
    [Crossref]
  13. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [Crossref]
  14. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
    [Crossref]
  15. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).
  16. S. T. Chou, S. H. Huang, Z. H. Hong, and W. Z. Chen, “A 40  Gbps optical receiver analog front-end in 65  nm CMOS,” in IEEE International Symposium on Circuits and Systems (2012), pp. 1736–1739.
  17. R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Express 23, 11975–11984 (2015).
    [Crossref]
  18. L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
    [Crossref]
  19. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
    [Crossref]
  20. A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22, 28623–28634 (2014).
    [Crossref]
  21. R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102, 031114 (2013).
    [Crossref]
  22. K. Brennan, “Theory of the steady-state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
    [Crossref]
  23. C. K. Sun, I. H. Tan, and J. E. Bowers, “Ultrafast transport dynamics of p-i-n photodetectors under high-power illumination,” IEEE Photon. Technol. Lett. 10, 135–137 (1998).
    [Crossref]
  24. M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
    [Crossref]
  25. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [Crossref]
  26. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
  27. T. Nagatsuma, “Measurement of high-speed devices and integrated-circuits using electrooptic sampling technique,” IEICE Trans. Electron. E76c, 55–63 (1993).
  28. Finisar, https://www.finisar.com/optical-components/xprv2021a .
  29. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
    [Crossref]
  30. J. E. Bowers and C. A. Burrus, “High-speed zero-bias wave-guide photodetectors,” Electron Lett. 22, 905–906 (1986).
  31. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
    [Crossref]
  32. C. Xu and K. Banerjee, “Physical modeling of the capacitance and capacitive coupling noise of through-oxide vias in FDSOI-based ultra-high density 3-D ICs,” IEEE Trans. Electron Devices 60, 123–131 (2013).
  33. C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.
  34. K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
    [Crossref]

2015 (2)

2014 (3)

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22, 28623–28634 (2014).
[Crossref]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

2013 (4)

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102, 031114 (2013).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

C. Xu and K. Banerjee, “Physical modeling of the capacitance and capacitive coupling noise of through-oxide vias in FDSOI-based ultra-high density 3-D ICs,” IEEE Trans. Electron Devices 60, 123–131 (2013).

2012 (4)

2011 (2)

2010 (4)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (2)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

2005 (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

2003 (1)

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

1999 (2)

T. K. Woodward and A. V. Krishnamoorthy, “1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies,” IEEE J. Sel. Top. Quantum Electron. 5, 146–156 (1999).
[Crossref]

T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
[Crossref]

1998 (1)

C. K. Sun, I. H. Tan, and J. E. Bowers, “Ultrafast transport dynamics of p-i-n photodetectors under high-power illumination,” IEEE Photon. Technol. Lett. 10, 135–137 (1998).
[Crossref]

1993 (1)

T. Nagatsuma, “Measurement of high-speed devices and integrated-circuits using electrooptic sampling technique,” IEICE Trans. Electron. E76c, 55–63 (1993).

1987 (1)

K. Brennan, “Theory of the steady-state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
[Crossref]

1986 (1)

J. E. Bowers and C. A. Burrus, “High-speed zero-bias wave-guide photodetectors,” Electron Lett. 22, 905–906 (1986).

Agarwal, D.

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).

Alon, E.

Amberg, P.

Asghari, M.

Assefa, S.

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

Baba, T.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102, 031114 (2013).
[Crossref]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Banerjee, K.

C. Xu and K. Banerjee, “Physical modeling of the capacitance and capacitive coupling noise of through-oxide vias in FDSOI-based ultra-high density 3-D ICs,” IEEE Trans. Electron Devices 60, 123–131 (2013).

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).

Bhatnagar, A.

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

Boeuf, F.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Bowers, J. E.

C. K. Sun, I. H. Tan, and J. E. Bowers, “Ultrafast transport dynamics of p-i-n photodetectors under high-power illumination,” IEEE Photon. Technol. Lett. 10, 135–137 (1998).
[Crossref]

J. E. Bowers and C. A. Burrus, “High-speed zero-bias wave-guide photodetectors,” Electron Lett. 22, 905–906 (1986).

Brennan, K.

K. Brennan, “Theory of the steady-state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref]

Burns, J. A.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Burrus, C. A.

J. E. Bowers and C. A. Burrus, “High-speed zero-bias wave-guide photodetectors,” Electron Lett. 22, 905–906 (1986).

Cao, L. Y.

M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).

Cassan, E.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

Chen, C. K.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Chen, C. L.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Chen, R.

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

Chen, W. Z.

S. T. Chou, S. H. Huang, Z. H. Hong, and W. Z. Chen, “A 40  Gbps optical receiver analog front-end in 65  nm CMOS,” in IEEE International Symposium on Circuits and Systems (2012), pp. 1736–1739.

Chou, S. T.

S. T. Chou, S. H. Huang, Z. H. Hong, and W. Z. Chen, “A 40  Gbps optical receiver analog front-end in 65  nm CMOS,” in IEEE International Symposium on Circuits and Systems (2012), pp. 1736–1739.

Clemens, B.

M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref]

Crozat, P.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

Cunningham, J. E.

Davids, P. S.

Dayringer, M.

Debaes, C.

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

DeRose, C. T.

Dong, P.

Fan, P. Y.

M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref]

Fedeli, J. M.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

Feng, D. Z.

Fisher, M.

Fujii, T.

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Gainsley, J.

Going, R.

Gouker, P. M.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Green, W. M. J.

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

Hartmann, J. M.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

Hasebe, K.

Hayakawa, R.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102, 031114 (2013).
[Crossref]

Healey, P.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Helman, N. C.

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

Ho, R.

Hong, Z. H.

S. T. Chou, S. H. Huang, Z. H. Hong, and W. Z. Chen, “A 40  Gbps optical receiver analog front-end in 65  nm CMOS,” in IEEE International Symposium on Circuits and Systems (2012), pp. 1736–1739.

Hsu, K.

Huang, S. H.

S. T. Chou, S. H. Huang, Z. H. Hong, and W. Z. Chen, “A 40  Gbps optical receiver analog front-end in 65  nm CMOS,” in IEEE International Symposium on Circuits and Systems (2012), pp. 1736–1739.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Ishikura, N.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102, 031114 (2013).
[Crossref]

Kakitsuka, T.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Keast, C. L.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Keeler, G. A.

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

Knecht, J. M.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Kobayashi, W.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Kopp, C.

Krishnamoorthy, A. V.

Kuramochi, E.

Kurokawa, T.

T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
[Crossref]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Lexau, J.

Li, G. L.

Li, J. D.

Liu, F.

Loo, J.

Luo, Y.

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Marris-Morini, D.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

Matsuo, S.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
[Crossref]

Mekis, A.

Miller, D. A. B.

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

Moghadam, H. F.

Nagatsuma, T.

T. Nagatsuma, “Measurement of high-speed devices and integrated-circuits using electrooptic sampling technique,” IEICE Trans. Electron. E76c, 55–63 (1993).

Nakahara, T.

T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
[Crossref]

Nguyen, H. C.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102, 031114 (2013).
[Crossref]

Nishiguchi, K.

Notomi, M.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22, 28623–28634 (2014).
[Crossref]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Nozaki, K.

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22, 28623–28634 (2014).
[Crossref]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Osmond, J.

Park, J. S.

M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref]

Patil, D.

Pinguet, T.

Polzer, A.

Raj, K.

Rylyakov, A. V.

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Sato, T.

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Schow, C. L.

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Seok, T. J.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).

Shakoor, A.

Shinya, A.

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22, 28623–28634 (2014).
[Crossref]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Shubin, I.

Starbuck, A. L.

Sun, C. K.

C. K. Sun, I. H. Tan, and J. E. Bowers, “Ultrafast transport dynamics of p-i-n photodetectors under high-power illumination,” IEEE Photon. Technol. Lett. 10, 135–137 (1998).
[Crossref]

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

Takeda, K.

Tan, I. H.

C. K. Sun, I. H. Tan, and J. E. Bowers, “Ultrafast transport dynamics of p-i-n photodetectors under high-power illumination,” IEEE Photon. Technol. Lett. 10, 135–137 (1998).
[Crossref]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Taniyama, H.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Tateno, K.

T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
[Crossref]

Thacker, H.

Thienpont, H.

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

Trotter, D. C.

Tsuda, H.

T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
[Crossref]

Virot, L.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Vivien, L.

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

Vlasov, Y. A.

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

Warner, K.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Watts, M. R.

Wheeler, B.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Woodward, T. K.

T. K. Woodward and A. V. Krishnamoorthy, “1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies,” IEEE J. Sel. Top. Quantum Electron. 5, 146–156 (1999).
[Crossref]

Wu, M. C.

Wyatt, P. W.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Xia, F. N.

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

Xu, C.

C. Xu and K. Banerjee, “Physical modeling of the capacitance and capacitive coupling noise of through-oxide vias in FDSOI-based ultra-high density 3-D ICs,” IEEE Trans. Electron Devices 60, 123–131 (2013).

Yao, J.

Yost, D.-R.

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Zheng, X. Z.

Zimmermann, H.

Zortman, W. A.

Appl. Phys. Lett. (2)

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102, 031114 (2013).
[Crossref]

K. Brennan, “Theory of the steady-state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
[Crossref]

Electron Lett. (1)

J. E. Bowers and C. A. Burrus, “High-speed zero-bias wave-guide photodetectors,” Electron Lett. 22, 905–906 (1986).

IEEE J. Sel. Top. Quantum Electron. (4)

S. Assefa, F. N. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010).
[Crossref]

T. K. Woodward and A. V. Krishnamoorthy, “1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies,” IEEE J. Sel. Top. Quantum Electron. 5, 146–156 (1999).
[Crossref]

T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, and T. Kurokawa, “Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver,” IEEE J. Sel. Top. Quantum Electron. 5, 209–216 (1999).
[Crossref]

C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. K. Sun, I. H. Tan, and J. E. Bowers, “Ultrafast transport dynamics of p-i-n photodetectors under high-power illumination,” IEEE Photon. Technol. Lett. 10, 135–137 (1998).
[Crossref]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).

IEEE Trans. Electron Devices (1)

C. Xu and K. Banerjee, “Physical modeling of the capacitance and capacitive coupling noise of through-oxide vias in FDSOI-based ultra-high density 3-D ICs,” IEEE Trans. Electron Devices 60, 123–131 (2013).

IEICE Trans. Electron. (1)

T. Nagatsuma, “Measurement of high-speed devices and integrated-circuits using electrooptic sampling technique,” IEICE Trans. Electron. E76c, 55–63 (1993).

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Nano Lett. (1)

M. L. Brongersma, L. Y. Cao, J. S. Park, P. Y. Fan, and B. Clemens, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref]

Nat. Commun. (1)

L. Virot, P. Crozat, J. M. Fedeli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Nat. Photonics (5)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7, 569–575 (2013).
[Crossref]

Opt. Commun. (1)

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

Opt. Express (9)

X. Z. Zheng, D. Patil, J. Lexau, F. Liu, G. L. Li, H. Thacker, Y. Luo, I. Shubin, J. D. Li, J. Yao, P. Dong, D. Z. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10  Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19, 5172–5186 (2011).
[Crossref]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45  GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
[Crossref]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).
[Crossref]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20, 3773–3780 (2012).
[Crossref]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
[Crossref]

K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi, “InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure,” Opt. Express 21, 19022–19028 (2013).
[Crossref]

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22, 28623–28634 (2014).
[Crossref]

K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).
[Crossref]

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on silicon photonics,” Opt. Express 23, 11975–11984 (2015).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Other (4)

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).

S. T. Chou, S. H. Huang, Z. H. Hong, and W. Z. Chen, “A 40  Gbps optical receiver analog front-end in 65  nm CMOS,” in IEEE International Symposium on Circuits and Systems (2012), pp. 1736–1739.

Finisar, https://www.finisar.com/optical-components/xprv2021a .

C. L. Chen, C. K. Chen, D.-R. Yost, J. M. Knecht, P. W. Wyatt, J. A. Burns, K. Warner, P. M. Gouker, P. Healey, B. Wheeler, and C. L. Keast, “Wafer-scale 3D integration of silicon-on-insulator RF amplifiers,” in IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, California, 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Theoretical required optical power and capacitance for a resistor-loaded PD. (a) Calculated required optical power and energy for a bit rate of 10 Gbit/s. The circuit model is shown at the top. P opt 1 and P opt 2 are denoted by red and blue curves, respectively, while the required optical power for the PD-TIA circuit is shown by a black dashed curve. (b) Required capacitance. The three curves are for different RC bandwidths (1, 10, and 100 GHz). R pd is assumed to be much smaller than R load .

Fig. 2.
Fig. 2.

PhC-PD structure. (a) Structural schematic of PhC-PD. (b) Top view and cross sectional view SEM images of fabricated device, where there are 8 rows of air holes beside the InGaAs absorber.

Fig. 3.
Fig. 3.

Theoretical capacitance of PhC-PD. The blue curve is calculated from the parallel-plate model. The red plots are the results simulated by FEM with a 3-D model. The lower three plots are for only the p-i-n junction area of PD and the upper plot is for the PD with electrical pads.

Fig. 4.
Fig. 4.

Static response of the PhC-PD for CW light input. (a) Photocurrent versus applied bias voltage characteristics for a device with an absorber length L abs = 1.7    μm . The light wavelength was set at the peak of the photocurrent spectrum (1536.7 nm). Different colors denote the different optical powers launched into the PD. (b) Photocurrent versus optical power characteristics plotted for a bias voltage of 2    V . (c) Photocurrent spectrum for different L abs . The input optical power was 10 ± 3    μW . (d) DC responsivity versus L abs characteristics. Experimental plots with theoretical curve are shown.

Fig. 5.
Fig. 5.

Dynamic responses for a device with L abs = 1.7    μm . (a) Eye diagram for 10, 20, and 40 Gbit/s NRZ optical signals. The green and red waveforms are the input optical signal and the detected electrical signal, respectively. (b) Small signal responses for different reverse-bias voltages. The wavelength was set at the peak of the photocurrent spectrum (1536.7 nm), and the optical peak power was 100 μW.

Fig. 6.
Fig. 6.

Response speed limitation on the width of p/n-doped region. (a) The structure of the device and I-V curve for the forward bias voltage. W ct is the distance between the absorber and the electrical contact pad. (b) Eye diagrams for a different W ct . The bit rate was 20 Gbit/s (top) and 40 Gbit/s (bottom).

Fig. 7.
Fig. 7.

Optical power dependence of the eye diagram. The optical peak power P peak was changed under a fixed bit rate of 20 Gbit/s.

Fig. 8.
Fig. 8.

Resistor-loaded PhC-PD and EO probing measurement setup. (a) Schematic of the sample (top) and corresponding equivalent circuit (bottom). The dashed square indicates the EO probing point. (b) Experimental setup for EO probing measurement. (TLD, Tunable laser diode; LN, Lithium-niobate modulator; EDFA, Erbium-doped fiber amplifier; BPF, Band-pass filter; VOA, Variable optical attenuator; PBS, Polarization beam splitter; HWP, Half-wave plate; QWP, Quarter-wave plate; FR, Faraday rotator) EO probing voltage for AC voltage applied to the reference strip line is shown in the right figure. (c) Spatial mapping of an EO probing measurement around the strip line. The left and right figures are with and without an optical input, respectively. The dashed line denotes the position of the metal strip lines.

Fig. 9.
Fig. 9.

Light-to-voltage conversion characteristics. (a) Average photocurrent and (b) generated AC voltage as a function of optical peak power. The length of the strip line L strip is 2.5 mm. (c) Light-to-voltage conversion efficiency for different load resistances R load . Square and circle plots denote the results for L strip values of 2.5 and 0.2 mm, respectively.

Fig. 10.
Fig. 10.

Dynamics for resistor-loaded PhC-PD. (a) Small-signal responses for different load resistances R load and strip line lengths L strip . (b) 3-dB bandwidth (square plots for left axis) and the efficiency-bandwidth product (circle plots for right axis). The plots show the experimental results, and the dashed curves show the calculated results considering both the PD junction capacitance and the parasitic capacitances. The bold dashed curves are calculated under the assumption of no parasitic capacitances.

Tables (1)

Tables Icon

Table 1. Comparison with Ge-PDs Based on Various Nanostructures

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i s 2 ¯ = ( η pd P in ) 2 ,
i n 2 ¯ = { 2 e ( i s + i d ) + 4 k T R eq } f BW .
P opt 1 = 1 η pd { 2 e ( i s + i d ) + 4 k T R eq } f BW · ( S / N ) rms .
P opt 2 = i s η pd = V load η pd R load .
η PD = η eff · e h ν · { 1 exp ( 2 n g n α abs Γ L abs ) } ,

Metrics