Abstract

Slabs formed by wire medium metamaterials are capable of transmitting evanescent waves over several wavelengths, and enable perfect imaging of field patterns with deeply subwavelength features over such long distances. To date, perfect imaging has been limited to narrow frequency windows defined by the Fabry–Perot (FP) resonance condition. Away from such resonances, backreflections within the slab result in the excitation of surface waves supported by the wire medium. This leads to image distortions, thus severely limiting the use of wire media for broadband subwavelength imaging. Here, we propose and demonstrate that this limitation can be overcome by using ultrashort electromagnetic pulses as the field source, allowing separation of the initial pulse from subsequent backreflections, which cannot be achieved using continuous-wave sources. Using a terahertz (THz) near-field microscope based on a time-domain approach, we demonstrate ultrabroadband transmission of distortion-free images over the entire frequency band of the source (0.1–1.75 THz). Such performance requires the slabs to be sufficiently long; the limits of this approach are also demonstrated by imaging a resonant mode with high Q-factor through a short slab. Our results pave the way for the implementation of wire media in broadband imaging applications based on short electromagnetic pulses, such as THz pulse imaging or optical imaging with ultrashort laser pulses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Removing image artefacts in wire array metamaterials

Md. Samiul Habib, Alessandro Tuniz, Korbinian J. Kaltenecker, Quentin Chateiller, Isadora Perrin, Shaghik Atakaramians, Simon C. Fleming, Alexander Argyros, and Boris T. Kuhlmey
Opt. Express 24(16) 17989-18002 (2016)

Dispersion control in coated wire media slabs

J. Scott Brownless, Björn C. P. Sturmberg, Alexander Argyros, Boris T. Kuhlmey, and C. Martijn de Sterke
J. Opt. Soc. Am. B 34(2) 472-482 (2017)

Propagation of single-cycle terahertz pulses in random media

Jeremy Pearce and Daniel M. Mittleman
Opt. Lett. 26(24) 2002-2004 (2001)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [Crossref]
  2. T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric media with hyperbolic dispersion relations,” Microwave Opt. Technol. Lett. 48, 363–367 (2006).
    [Crossref]
  3. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
    [Crossref]
  4. P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
    [Crossref]
  5. P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
    [Crossref]
  6. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
    [Crossref]
  7. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
    [Crossref]
  8. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
    [Crossref]
  9. A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49, E1–E6 (2010).
    [Crossref]
  10. P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
    [Crossref]
  11. A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
    [Crossref]
  12. A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39, 3286–3289 (2014).
    [Crossref]
  13. A. Tuniz and B. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
    [Crossref]
  14. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
    [Crossref]
  15. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
    [Crossref]
  16. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
    [Crossref]
  17. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
    [Crossref]
  18. S. Waselikowski, C. Fischer, J. Wallauer, and M. Walther, “Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination,” New J. Phys. 15, 075005 (2013).
    [Crossref]
  19. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
    [Crossref]
  20. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
    [Crossref]
  21. CST Gesellschaft für Computersimulationstechnik, Bad Nauheimer Str. 19, 64289 Darmstadt, Germany, CST Microwave Studio.
  22. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
    [Crossref]

2015 (1)

A. Tuniz and B. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref]

2014 (1)

2013 (2)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

S. Waselikowski, C. Fischer, J. Wallauer, and M. Walther, “Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination,” New J. Phys. 15, 075005 (2013).
[Crossref]

2012 (2)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

2011 (1)

2010 (3)

A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49, E1–E6 (2010).
[Crossref]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

2009 (3)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
[Crossref]

2008 (1)

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

2007 (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

2006 (2)

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric media with hyperbolic dispersion relations,” Microwave Opt. Technol. Lett. 48, 363–367 (2006).
[Crossref]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[Crossref]

2005 (1)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

1989 (1)

1950 (1)

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Anthony, J.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Argyros, A.

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39, 3286–3289 (2014).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[Crossref]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Bitzer, A.

de Sterke, C. M.

Depine, R. A.

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric media with hyperbolic dispersion relations,” Microwave Opt. Technol. Lett. 48, 363–367 (2006).
[Crossref]

Fattinger, C.

Feurer, T.

Fink, Y.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Fischer, B. M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

Fischer, C.

S. Waselikowski, C. Fischer, J. Wallauer, and M. Walther, “Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination,” New J. Phys. 15, 075005 (2013).
[Crossref]

Fleming, S. C.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Goubau, G.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
[Crossref]

Grischkowsky, D.

Hao, Y.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Helm, H.

Ikonen, P.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[Crossref]

Ireland, D.

Kaltenecker, K. J.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Kuhlmey, B.

A. Tuniz and B. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref]

Kuhlmey, B. T.

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39, 3286–3289 (2014).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Lakhtakia, A.

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric media with hyperbolic dispersion relations,” Microwave Opt. Technol. Lett. 48, 363–367 (2006).
[Crossref]

Leonhardt, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

Lwin, R.

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Mackay, T. G.

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric media with hyperbolic dispersion relations,” Microwave Opt. Technol. Lett. 48, 363–367 (2006).
[Crossref]

Merbold, H.

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Ortner, A.

Palikaras, G. K.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

Parini, C.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Poladian, L.

Rahman, A.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

Shapira, O.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Silveirinha, M. G.

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[Crossref]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[Crossref]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

Sorin, F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

Thoman, A.

Tretyakov, S.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Tse, S.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Tuniz, A.

A. Tuniz and B. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref]

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. M. de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39, 3286–3289 (2014).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

van Exter, M.

Wallauer, J.

S. Waselikowski, C. Fischer, J. Wallauer, and M. Walther, “Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination,” New J. Phys. 15, 075005 (2013).
[Crossref]

Walther, M.

S. Waselikowski, C. Fischer, J. Wallauer, and M. Walther, “Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination,” New J. Phys. 15, 075005 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
[Crossref]

A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49, E1–E6 (2010).
[Crossref]

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
[Crossref]

Wang, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Waselikowski, S.

S. Waselikowski, C. Fischer, J. Wallauer, and M. Walther, “Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination,” New J. Phys. 15, 075005 (2013).
[Crossref]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

Zhao, Y.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Adv. Mater. (1)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

A. Rahman, P. A. Belov, M. G. Silveirinha, C. R. Simovski, Y. Hao, and C. Parini, “The importance of Fabry–Perot resonance and the role of shielding in subwavelength imaging performance of multiwire endoscopes,” Appl. Phys. Lett. 94, 031104 (2009).
[Crossref]

J. Appl. Phys. (1)

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
[Crossref]

J. Visualized Exp. (1)

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, 4299 (2012).
[Crossref]

Microwave Opt. Technol. Lett. (1)

T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric media with hyperbolic dispersion relations,” Microwave Opt. Technol. Lett. 48, 363–367 (2006).
[Crossref]

Nano Lett. (1)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

Nat. Mater. (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

New J. Phys. (1)

S. Waselikowski, C. Fischer, J. Wallauer, and M. Walther, “Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination,” New J. Phys. 15, 075005 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Phys. Rev. E (1)

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref]

Sci. Rep. (1)

A. Tuniz and B. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref]

Other (1)

CST Gesellschaft für Computersimulationstechnik, Bad Nauheimer Str. 19, 64289 Darmstadt, Germany, CST Microwave Studio.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) Photographs of the THz WM fixed in transparent mounts, (b) top-view photograph of the THz WM, and (c) schematic illustration (not to scale) of the experiment.

Fig. 2.
Fig. 2.

Microscope images of the sample structures: (a) the plasmonic lens and (b) the complementary split-ring resonator.

Fig. 3.
Fig. 3.

Field maps of the plasmonic lens without WM. Left column, sample under investigation; middle and right columns, intensity (top) and real part (bottom) of the complex electric field distribution ( E z ) at 0.5 and 1.75 THz.

Fig. 4.
Fig. 4.

Field maps of the plasmonic lens with the 1.36 mm WM. Left column, sample under investigation together with the respective WM; middle and right columns, intensity (top) and real part (bottom) of the complex electric field distribution ( E z ) at 0.5 and 1.75 THz.

Fig. 5.
Fig. 5.

Field maps of the plasmonic lens with the 6.76 mm WM. Left column, sample under investigation together with the respective WM; middle and right columns, intensity (top) and real part (bottom) of the complex electric field distribution ( E z ) at 0.5 and 1.75 THz.

Fig. 6.
Fig. 6.

(a) Plasmonic lens. The red line indicates the position of the frequency-dependent intensity profiles along the x axis through the center of the plasmonic lens (b) without WM, and (c) with the 1.36 mm and (d) 6.76 mm WM.

Fig. 7.
Fig. 7.

Simulated field transients and frequency-dependent electric field intensity profiles along the x axis through the center of the image of the plasmonic lens (a), (b) without WM and, in pairs, (c), (d); (e), (f); and (g), (h) with the 1.36 mm long WM for different temporal simulation windows. The arrows indicate the position on the x axis of the plotted transient.

Fig. 8.
Fig. 8.

Experimental field transients and frequency-dependent intensity profile along the x axis through the center of the image of the field distribution of the plasmonic lens on the image plane of the 1.36 mm WM (a), (b) without a reflected pulse and (c), (d) with a reflected pulse.

Fig. 9.
Fig. 9.

Field maps of the CSRR without WM. Left column, sample under investigation; middle and right columns, intensity (top) and real part (bottom) of the complex electric field distribution ( E z ) at the fundamental ( n = 1 ) resonance at 75 GHz and at the higher order mode ( n = 3 ) of the CSRR at 225 GHz.

Fig. 10.
Fig. 10.

Field maps of the CSRR with the 1.36 mm WM. Left column, sample under investigation together with the respective WM; middle and right columns, intensity (top) and real part (bottom) of the complex electric field distribution ( E z ) at the fundamental ( n = 1 ) resonance at 75 GHz and at the higher order mode ( n = 3 ) of the CSRR at 225 GHz.

Fig. 11.
Fig. 11.

Field maps of the CSRR with the 6.76 mm WM. Left column, sample under investigation together with the respective WM; middle and right columns, intensity (top) and real part (bottom) of the complex electric field distribution ( E z ) at the fundamental ( n = 1 ) resonance at 75 GHz and at the higher order mode ( n = 3 ) of the CSRR at 225 GHz.

Fig. 12.
Fig. 12.

Intensity distribution of the CSRR at 75 GHz (a) with a reflected pulse and (b) without a reflected pulse, and at 87 GHz (c) with a reflected pulse and (d) without a reflected pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ ¯ = ε 0 [ ε t ( x ^ x ^ + y ^ y ^ ) + ε z z ^ z ^ ] ,
k z 2 ε t | k t | 2 | ε z | = ω 2 c 2 ,
E z ( r ) J 1 ( k SPP r ) · cos ( θ ) ,

Metrics