Abstract

Raman spectroscopy is a laser spectroscopic method that reveals detailed chemical information about a sample. Point-wise scanning produces chemical maps of heterogeneous samples such as biological tissue without prior staining. However, the intrinsically low Raman scattering cross-sections result in long acquisition times, despite the high excitation intensity in the focus. Here, we present a novel technique termed light sheet Raman micro-spectroscopy, which is an imaging spectrometer attached to a light sheet illumination microscope that can quickly acquire large hyperspectral Raman images. This method is more than 5 times faster than conventional approaches, while reducing the local excitation intensity over 300 fold. We show a stack of hyperspectral Raman images of a zebrafish eye with 1024×1024×50 spectra (17 min/slice) to demonstrate how the application of spontaneous Raman micro-spectroscopy can be extended to biomedical research and diagnosis based on directly utilizing the molecular information present in the sample.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters

Israel Rocha-Mendoza, Jacob Licea-Rodriguez, Mónica Marro, Omar E. Olarte, Marcos Plata-Sanchez, and Pablo Loza-Alvarez
Biomed. Opt. Express 6(9) 3449-3461 (2015)

Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope

Yusuke Oshima, Hidetoshi Sato, Hiroko Kajiura-Kobayashi, Tetsuaki Kimura, Kiyoshi Naruse, and Shigenori Nonaka
Opt. Express 20(15) 16195-16204 (2012)

Raman spectroscopy: techniques and applications in the life sciences

Dustin W. Shipp, Faris Sinjab, and Ioan Notingher
Adv. Opt. Photon. 9(2) 315-428 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).
  2. C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407, 699–717 (2012).
    [Crossref]
  3. C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
    [Crossref]
  4. T. Dieing, O. Hollricher, and J. Toporski, Confocal Raman Microscopy (Springer, 2011), Vol. 158.
  5. M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman-spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
    [Crossref]
  6. C. J. De Grauw, C. Otto, and J. Greve, “Line-scan Raman microspectrometry for biological applications,” Appl. Spectrosc. 51, 1607–1612 (1997).
    [Crossref]
  7. J. Qi and W.-C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53, 2881–2885 (2014).
    [Crossref]
  8. H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Ann. Phys. 315, 1–39 (1903).
    [Crossref]
  9. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170, 229–236 (1993).
    [Crossref]
  10. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
    [Crossref]
  11. Y. Oshima, H. Sato, H. Kajiura-Kobayashi, T. Kimura, K. Naruse, and S. Nonaka, “Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope,” Opt. Express 20, 16195–16204 (2012).
    [Crossref]
  12. I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41, 1099–1101 (2010).
    [Crossref]
  13. P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
    [Crossref]
  14. J. Zhao and R. L. McCreery, “Multichannel Fourier transform Raman spectroscopy: combining the advantages of CCDs with interferometry,” Appl. Spectrosc. 50, 1209–1214 (1996).
    [Crossref]
  15. R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. 42, 3320–3325 (2003).
    [Crossref]
  16. Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45, 115601 (2006).
    [Crossref]
  17. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).
  18. U. Leischner, A. Schierloh, W. Zieglgänsberger, and H. U. Dodt, “Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples,” PLoS ONE 5, e10391 (2010).
    [Crossref]
  19. J. Fehrenbach, P. Weiss, and C. Lorenzo, “Variational algorithms to remove stationary noise: applications to microscopy imaging,” IEEE Trans. Image Process. 21, 4420–4430 (2012).
    [Crossref]
  20. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, eds. (MIT, 2001), pp. 556–562.
  21. H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).
  22. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44, 1614–1624 (2005).
    [Crossref]
  23. R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16, 021114 (2011).
    [Crossref]
  24. D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell 162, 246–257 (2015).
    [Crossref]
  25. B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
  26. E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20, 21805–21814 (2012).
    [Crossref]
  27. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32, 2608–2610 (2007).
    [Crossref]
  28. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
    [Crossref]

2015 (1)

D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell 162, 246–257 (2015).
[Crossref]

2014 (2)

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

J. Qi and W.-C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53, 2881–2885 (2014).
[Crossref]

2013 (1)

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

2012 (5)

J. Fehrenbach, P. Weiss, and C. Lorenzo, “Variational algorithms to remove stationary noise: applications to microscopy imaging,” IEEE Trans. Image Process. 21, 4420–4430 (2012).
[Crossref]

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407, 699–717 (2012).
[Crossref]

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

Y. Oshima, H. Sato, H. Kajiura-Kobayashi, T. Kimura, K. Naruse, and S. Nonaka, “Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope,” Opt. Express 20, 16195–16204 (2012).
[Crossref]

E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20, 21805–21814 (2012).
[Crossref]

2011 (2)

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16, 021114 (2011).
[Crossref]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

2010 (2)

U. Leischner, A. Schierloh, W. Zieglgänsberger, and H. U. Dodt, “Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples,” PLoS ONE 5, e10391 (2010).
[Crossref]

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41, 1099–1101 (2010).
[Crossref]

2009 (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

2007 (2)

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32, 2608–2610 (2007).
[Crossref]

2006 (1)

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45, 115601 (2006).
[Crossref]

2005 (1)

2003 (1)

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. 42, 3320–3325 (2003).
[Crossref]

1997 (1)

1996 (1)

1993 (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170, 229–236 (1993).
[Crossref]

1990 (1)

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman-spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

1903 (1)

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Ann. Phys. 315, 1–39 (1903).
[Crossref]

Adal, T.

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

Arora, R.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16, 021114 (2011).
[Crossref]

Barman, I.

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41, 1099–1101 (2010).
[Crossref]

Baumgart, E.

Bembenek, J. N.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Betzig, E.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

Bohme, R.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44, 1614–1624 (2005).
[Crossref]

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. 42, 3320–3325 (2003).
[Crossref]

Bowden, M.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman-spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

Burns, D. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170, 229–236 (1993).
[Crossref]

Chalmers, J. M.

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).

Chavel, P.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45, 115601 (2006).
[Crossref]

Chen, B.-C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Cichocki, A.

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

Davidson, M. W.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

De Grauw, C. J.

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Dieing, T.

T. Dieing, O. Hollricher, and J. Toporski, Confocal Raman Microscopy (Springer, 2011), Vol. 158.

Dietzek, B.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

Dodt, H. U.

U. Leischner, A. Schierloh, W. Zieglgänsberger, and H. U. Dodt, “Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples,” PLoS ONE 5, e10391 (2010).
[Crossref]

Eliceiri, K. W.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Emge, D.

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

English, B. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Fehrenbach, J.

J. Fehrenbach, P. Weiss, and C. Lorenzo, “Variational algorithms to remove stationary noise: applications to microscopy imaging,” IEEE Trans. Image Process. 21, 4420–4430 (2012).
[Crossref]

Ferrec, Y.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45, 115601 (2006).
[Crossref]

Fritz-Laylin, L.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

Gardiner, D. J.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman-spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

Gerrard, D. L.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman-spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

Greve, J.

Griffiths, P. R.

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Grill, S. W.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Hammer, J. A.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Hollricher, O.

T. Dieing, O. Hollricher, and J. Toporski, Confocal Raman Microscopy (Springer, 2011), Vol. 158.

Huisken, J.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32, 2608–2610 (2007).
[Crossref]

Janetopoulos, C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Kajiura-Kobayashi, H.

Kiehart, D. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Kimura, T.

Krafft, C.

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407, 699–717 (2012).
[Crossref]

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

Kubitscheck, U.

Lee, D. D.

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, eds. (MIT, 2001), pp. 556–562.

Legant, W. R.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Leischner, U.

U. Leischner, A. Schierloh, W. Zieglgänsberger, and H. U. Dodt, “Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples,” PLoS ONE 5, e10391 (2010).
[Crossref]

Li, H.

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

Lichtman, J. W.

D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell 162, 246–257 (2015).
[Crossref]

Lippincott-Schwartz, J.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Liu, J.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16, 021114 (2011).
[Crossref]

Liu, Z.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Lorenzo, C.

J. Fehrenbach, P. Weiss, and C. Lorenzo, “Variational algorithms to remove stationary noise: applications to microscopy imaging,” IEEE Trans. Image Process. 21, 4420–4430 (2012).
[Crossref]

McCreery, R. L.

Milkie, D. E.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

Mimori-Kiyosue, Y.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Mitchell, D. M.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Mullins, R. D.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Naruse, K.

Nonaka, S.

Oshima, Y.

Otto, C.

Petrov, G. I.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16, 021114 (2011).
[Crossref]

Pitrone, P. G.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

Popp, J.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407, 699–717 (2012).
[Crossref]

Preibisch, S.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Qi, J.

Reymann, A.-C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Rice, G.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman-spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

Richardson, D. S.

D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell 162, 246–257 (2015).
[Crossref]

Ritter, A. T.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Romero, D. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Sato, H.

Sauer, H.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45, 115601 (2006).
[Crossref]

Schierloh, A.

U. Leischner, A. Schierloh, W. Zieglgänsberger, and H. U. Dodt, “Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples,” PLoS ONE 5, e10391 (2010).
[Crossref]

Schindelin, J.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Schmitt, M.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44, 1614–1624 (2005).
[Crossref]

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. 42, 3320–3325 (2003).
[Crossref]

Seung, H. S.

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, eds. (MIT, 2001), pp. 556–562.

Seydoux, G.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Shao, L.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Shih, W.-C.

Siedentopf, H.

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Ann. Phys. 315, 1–39 (1903).
[Crossref]

Singh, G. P.

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41, 1099–1101 (2010).
[Crossref]

Spelman, F. A.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170, 229–236 (1993).
[Crossref]

Stainier, D. Y. R.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32, 2608–2610 (2007).
[Crossref]

Stuyvenberg, L.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Taboury, J.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45, 115601 (2006).
[Crossref]

Tan, K. M.

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41, 1099–1101 (2010).
[Crossref]

Tomancak, P.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Toporski, J.

T. Dieing, O. Hollricher, and J. Toporski, Confocal Raman Microscopy (Springer, 2011), Vol. 158.

Tulu, U. S.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Voie, A. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170, 229–236 (1993).
[Crossref]

Wang, J. T.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Wang, K.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Wang, W.

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

Weber, M.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Weiss, P.

J. Fehrenbach, P. Weiss, and C. Lorenzo, “Variational algorithms to remove stationary noise: applications to microscopy imaging,” IEEE Trans. Image Process. 21, 4420–4430 (2012).
[Crossref]

Wu, X. S.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Yakovlev, V. V.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16, 021114 (2011).
[Crossref]

Zhao, J.

Zieglgänsberger, W.

U. Leischner, A. Schierloh, W. Zieglgänsberger, and H. U. Dodt, “Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples,” PLoS ONE 5, e10391 (2010).
[Crossref]

Zsigmondy, R.

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Ann. Phys. 315, 1–39 (1903).
[Crossref]

Anal. Bioanal. Chem. (1)

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407, 699–717 (2012).
[Crossref]

Ann. Phys. (1)

H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Ann. Phys. 315, 1–39 (1903).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (2)

Cell (1)

D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell 162, 246–257 (2015).
[Crossref]

Development (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

IEEE Trans. Image Process. (1)

J. Fehrenbach, P. Weiss, and C. Lorenzo, “Variational algorithms to remove stationary noise: applications to microscopy imaging,” IEEE Trans. Image Process. 21, 4420–4430 (2012).
[Crossref]

J. Biomed. Opt. (2)

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16, 021114 (2011).
[Crossref]

J. Microsc. (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170, 229–236 (1993).
[Crossref]

J. Raman Spectrosc. (2)

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman-spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

I. Barman, K. M. Tan, and G. P. Singh, “Optical sectioning using single-plane-illumination Raman imaging,” J. Raman Spectrosc. 41, 1099–1101 (2010).
[Crossref]

J. VLSI Signal Processing (1)

H. Li, T. Adal, W. Wang, D. Emge, A. Cichocki, and A. Cichocki, “Non-negative matrix factorization with orthogonality constraints and its application to Raman spectroscopy,” J. VLSI Signal Processing 48, 83–97 (2007).

Nat. Methods (2)

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref]

Opt. Eng. (2)

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. 42, 3320–3325 (2003).
[Crossref]

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45, 115601 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

PLoS ONE (1)

U. Leischner, A. Schierloh, W. Zieglgänsberger, and H. U. Dodt, “Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples,” PLoS ONE 5, e10391 (2010).
[Crossref]

Science (1)

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, A.-C. Reymann, J. N. Bembenek, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).

Other (4)

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, eds. (MIT, 2001), pp. 556–562.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).

T. Dieing, O. Hollricher, and J. Toporski, Confocal Raman Microscopy (Springer, 2011), Vol. 158.

Supplementary Material (2)

NameDescription
» Supplement 1: PDF (1182 KB)      Supplemental document
» Visualization 1: MP4 (14812 KB)      Unmixed 3D Raman image of a zebrafish eye.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Method of LSRM. (a) Out-of-focus illumination comparison between confocal scanning with one high-NA objective, and (b) light sheet illumination with a separate objective for illumination. (c) Stable, high-étendue interferometer for high acceptance angle with two inputs and outputs, consisting of two reduced-corner cube reflectors and two beam splitters. (d) Long-term stable embedding for the sample S in agarose. It is attached to a spoon-like metal structure for imaging in water immersion. (e) Optical setup of illumination path with a 2 W, 577 nm laser (yellow) and Fourier-transform imaging spectrometer (top view of (c)) (red). Sample S is in its water-filled chamber (gray), and reference laser is not shown here for clarity. (f) Principle of under-sampling the interferogram based on a typical Raman spectrum consisting of C-H and O-H modes, fingerprint and background fluorescence with an excitation wavelength of 577 nm (see Supplement 1 for details of interferogram acquisition).

Fig. 2.
Fig. 2.

LSRM with polymer beads. Result of a 2048 × 2048 Raman spectra containing measurement of PS and PMMA beads embedded in agarose and obtained using 4096 different OPDs. (a)  2048 × 2048 spectra at 18    cm 1 resolution and 3.5 min total exposure; (red) ring-breathing mode of PS from 1000    cm 1 to 1018    cm 1 , (green) C-H stretch mode in PMMA, band from 2941 to 2959    cm 1 , and (blue) water signal from 3193 to 3660    cm 1 . (b) 16 times magnified ROI as indicated in (a). (c) Mean of spectra at 4.4    cm 1 resolution and 14 min total exposure of all PS (red) and PMMA beads (blue). (d) One out of one million 2 × 2 binned spectra at 4.4    cm 1 resolution of PS (red) and PMMA beads (blue). Excitation polarization dependence of averaged (e) PS beads and (f) PMMA beads in the illumination plane 0° (red) and orthogonal to the plane 90° (blue).

Fig. 3.
Fig. 3.

Reducing light sheet shadows. Raman images of the eye of a zebrafish embryo (Danio rerio) embedded in 2% standard agarose. Maximal irradiance: 870    μW / μm 2 , spectral resolution: 4.4    cm 1 , total exposure time: 1 h 8 min. (a) Raman peak from 2941 to 3017    cm 1 , (b) from 2851 to 2910    cm 1 , (c) water signal from 3247    cm 1 to 3826    cm 1 , (d) reducing shadows by normalizing (a) by (c), and (e) normalized (b) by (c).

Fig. 4.
Fig. 4.

Raman spectra of the eye of a zebrafish embryo. (a) NMF-based spectral unmixing of a single hyperspectral image at 4.4    cm 1 spectral resolution after 250000 iterations corresponding to Fig. 5(a). (b) Comparison of the SNR of our LSRM and a state-of-the-art confocal Raman microscope based on a zebrafish eye lens sample (see Table 1). (green) Averaged spectral LSRM data of 6 × 6 raw pixels ( 1    μm × 1    μm ). Equivalent time of acquisition in terms of scanning: 39 ms. (red) Same as green, but with a Gauss filter of σ = 4.4    cm 1 . (blue) Averaged spectral data of a confocal microscope of 2 × 2 raw pixels ( 1    μm × 1    μm ) with an acquisition time of 175 ms. Compare the shape of the peak at 1001    cm 1 and the noise on top of the water shoulder between 3200 and 3500    cm 1 .

Fig. 5.
Fig. 5.

Unmixed 3D Raman image of a zebrafish eye. Corresponding color images of three NMF channels: (red) collagen-like fingerprint, (green) lipid-like fingerprint, (blue) DNA-like fingerprint. (a) Image NMF result at 4.4    cm 1 spectral resolution; corresponding spectra shown in Fig. 4(a). (b) Selected x y -slice of the 3D hyperspectral image stack at 18    cm 1 resolution after NMF based unmixing [Fig. 4(a)] and 3D deconvolution of each color channel. (c) Selected y z -slice. (d) Selected x z -slice.

Tables (1)

Tables Icon

Table 1. Experimental Parameters of the Presented LRSM Setup Compared to a Confocal Raman Microscope

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sr = [ t ^ L t ^ C ] 1 = [ λ L λ C ] 4 · [ NA L NA C ] 2 · [ s L s C ] 2 · [ SNR L SNR C ] 2 · [ t L t C ] 1 sr = [ 577 nm 532 nm ] 4 · [ 1 0.8 ] 2 · [ 325 μm 40 μm ] 2 · [ 31 42 ] 2 · [ 280 s 4096 s ] = 5.3.

Metrics