Abstract

Dual-comb spectroscopy is an emerging new spectroscopic tool that exploits the frequency resolution, frequency accuracy, broad bandwidth, and brightness of frequency combs for ultrahigh-resolution, high-sensitivity broadband spectroscopy. By using two coherent frequency combs, dual-comb spectroscopy allows a sample’s spectral response to be measured on a comb tooth-by-tooth basis rapidly and without the size constraints or instrument response limitations of conventional spectrometers. This review describes dual-comb spectroscopy and summarizes the current state of the art. As frequency comb technology progresses, dual-comb spectroscopy will continue to mature and could surpass conventional broadband spectroscopy for a wide range of laboratory and field applications.

Full Article  |  PDF Article
OSA Recommended Articles
Accurate frequency referencing for fieldable dual-comb spectroscopy

Gar-Wing Truong, Eleanor M. Waxman, Kevin C. Cossel, Esther Baumann, Andrew Klose, Fabrizio R. Giorgetta, William C. Swann, Nathan R. Newbury, and Ian Coddington
Opt. Express 24(26) 30495-30504 (2016)

Coherent cavity-enhanced dual-comb spectroscopy

Adam J. Fleisher, David A. Long, Zachary D. Reed, Joseph T. Hodges, and David F. Plusquellic
Opt. Express 24(10) 10424-10434 (2016)

Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time

Pedro Martín-Mateos, Borja Jerez, Pedro Largo-Izquierdo, and Pablo Acedo
Opt. Express 26(8) 9700-9713 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
    [Crossref]
  2. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref]
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
    [Crossref]
  4. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 061101 (2005).
    [Crossref]
  5. M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
    [Crossref]
  6. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
    [Crossref]
  7. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
    [Crossref]
  8. H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
    [Crossref]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  10. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).
    [Crossref]
  11. G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6  THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
    [Crossref]
  12. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
    [Crossref]
  13. R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
    [Crossref]
  14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
    [Crossref]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
    [Crossref]
  16. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
    [Crossref]
  17. J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).
    [Crossref]
  18. T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
    [Crossref]
  19. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
    [Crossref]
  20. N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
    [Crossref]
  21. M. Godbout, J.-D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18, 15981–15989 (2010).
    [Crossref]
  22. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
    [Crossref]
  23. G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
    [Crossref]
  24. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
    [Crossref]
  25. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
    [Crossref]
  26. T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
    [Crossref]
  27. T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
    [Crossref]
  28. Z. Zhang, C. Gu, J. Sun, C. Wang, T. Gardiner, and D. T. Reid, “Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy,” Opt. Lett. 37, 187–189 (2012).
    [Crossref]
  29. A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
    [Crossref]
  30. S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775  nm,” Opt. Express 21, 30707–30715 (2013).
    [Crossref]
  31. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21, 7411–7418 (2013).
    [Crossref]
  32. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref]
  33. Z. Zhang, X. Fang, T. Gardiner, and D. T. Reid, “High-power asynchronous midinfrared optical parametric oscillator frequency combs,” Opt. Lett. 38, 2077–2079 (2013).
    [Crossref]
  34. F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
    [Crossref]
  35. Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
    [Crossref]
  36. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
    [Crossref]
  37. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104, 031114 (2014).
    [Crossref]
  38. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref]
  39. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
  40. A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
    [Crossref]
  41. Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
    [Crossref]
  42. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref]
  43. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
    [Crossref]
  44. M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
    [Crossref]
  45. T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
    [Crossref]
  46. T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
    [Crossref]
  47. I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
    [Crossref]
  48. Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy,” Appl. Phys. B 119, 65–74 (2015).
    [Crossref]
  49. J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
    [Crossref]
  50. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
    [Crossref]
  51. F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
    [Crossref]
  52. G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
    [Crossref]
  53. F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
    [Crossref]
  54. P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
    [Crossref]
  55. P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
    [Crossref]
  56. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
    [Crossref]
  57. V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
    [Crossref]
  58. F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
    [Crossref]
  59. S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
    [Crossref]
  60. S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
    [Crossref]
  61. A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
  62. T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
    [Crossref]
  63. J. L. Hall, “Nobel lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
    [Crossref]
  64. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27, B51–B62 (2010).
    [Crossref]
  65. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
    [Crossref]
  66. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref]
  67. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
    [Crossref]
  68. L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
    [Crossref]
  69. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
    [Crossref]
  70. R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
    [Crossref]
  71. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
    [Crossref]
  72. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
    [Crossref]
  73. A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection,” Appl. Phys. B 119, 87–96 (2015).
    [Crossref]
  74. M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
    [Crossref]
  75. P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
    [Crossref]
  76. P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).
  77. D. R. Carlson, T.-H. Wu, and R. J. Jones, “Dual-comb intracavity high harmonic generation,” in Frontiers in Optics (OSA, 2014), paper FTh1A.2.
  78. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
    [Crossref]
  79. V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20, 3066–3075 (2012).
    [Crossref]
  80. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21, 11141–11149 (2013).
    [Crossref]
  81. J.-L. Peng, T.-A. Liu, and R.-H. Shu, “Optical frequency counter based on two mode-locked fiber laser combs,” Appl. Phys. B 92, 513–518 (2008).
    [Crossref]
  82. T.-A. Liu, R.-H. Shu, and J.-L. Peng, “Semi-automatic, octave-spanning optical frequency counter,” Opt. Express 16, 10728–10735 (2008).
    [Crossref]
  83. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
    [Crossref]
  84. I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
    [Crossref]
  85. F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34, 3875–3877 (2009).
    [Crossref]
  86. A. Klee, J. Davila-Rodriguez, M. Bagnell, and P. J. Delfyett, “Self-referenced spectral phase retrieval of dissimilar optical frequency combs via multiheterodyne detection,” in IEEE Photonics Conference (IPC) (2012), pp. 491–492.
  87. S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20, 7375–7387 (2012).
    [Crossref]
  88. A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19, 1100711 (2013).
    [Crossref]
  89. L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
    [Crossref]
  90. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  91. A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
    [Crossref]
  92. M. A. R. Reber, Y. Chen, and T. K. Allison, “Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive,” Optica 3, 311–317 (2016).
  93. G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).
  94. T. Kraetschmer, J. W. Walewski, and S. T. Sanders, “Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity,” Opt. Lett. 31, 3179–3181 (2006).
    [Crossref]
  95. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23, 5521–5531 (2015).
    [Crossref]
  96. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy,” arXiv: 1512.00979 (2015).
  97. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).
  98. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
    [Crossref]
  99. J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).
  100. L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
    [Crossref]
  101. M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.
  102. C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Advances in Optical Materials (Optical Society of America, 2011), paper FWA2.
  103. S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52, 248–255 (2013).
    [Crossref]
  104. S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22, 8101–8113 (2014).
    [Crossref]
  105. K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
    [Crossref]
  106. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18, 1613–1617 (2010).
    [Crossref]
  107. I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39, 5471–5474 (2014).
    [Crossref]
  108. D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136, 154201 (2012).
    [Crossref]
  109. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  110. F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
    [Crossref]
  111. C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett. 37, 2928–2930 (2012).
    [Crossref]
  112. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [Crossref]
  113. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011).
    [Crossref]
  114. K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23, 26596–26603 (2015).
    [Crossref]
  115. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
    [Crossref]
  116. T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40, 4226–4228 (2015).
    [Crossref]
  117. http://www.laserquantum.com/ .
  118. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
    [Crossref]

2016 (3)

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

M. A. R. Reber, Y. Chen, and T. K. Allison, “Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive,” Optica 3, 311–317 (2016).

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

2015 (21)

K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23, 26596–26603 (2015).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40, 4226–4228 (2015).
[Crossref]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy,” Appl. Phys. B 119, 65–74 (2015).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref]

A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection,” Appl. Phys. B 119, 87–96 (2015).
[Crossref]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23, 5521–5531 (2015).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
[Crossref]

2014 (15)

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104, 031114 (2014).
[Crossref]

S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22, 8101–8113 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39, 5471–5474 (2014).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

2013 (11)

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21, 11141–11149 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19, 1100711 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775  nm,” Opt. Express 21, 30707–30715 (2013).
[Crossref]

S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52, 248–255 (2013).
[Crossref]

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21, 7411–7418 (2013).
[Crossref]

Z. Zhang, X. Fang, T. Gardiner, and D. T. Reid, “High-power asynchronous midinfrared optical parametric oscillator frequency combs,” Opt. Lett. 38, 2077–2079 (2013).
[Crossref]

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
[Crossref]

2012 (15)

C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett. 37, 2928–2930 (2012).
[Crossref]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
[Crossref]

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref]

F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

Z. Zhang, C. Gu, J. Sun, C. Wang, T. Gardiner, and D. T. Reid, “Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy,” Opt. Lett. 37, 187–189 (2012).
[Crossref]

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136, 154201 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20, 3066–3075 (2012).
[Crossref]

S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20, 7375–7387 (2012).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

2011 (5)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011).
[Crossref]

2010 (16)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27, B51–B62 (2010).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref]

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18, 1613–1617 (2010).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

M. Godbout, J.-D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18, 15981–15989 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[Crossref]

2009 (4)

2008 (5)

2007 (3)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

2006 (5)

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
[Crossref]

T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

J. L. Hall, “Nobel lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
[Crossref]

T. Kraetschmer, J. W. Walewski, and S. T. Sanders, “Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity,” Opt. Lett. 31, 3179–3181 (2006).
[Crossref]

2005 (2)

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 061101 (2005).
[Crossref]

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[Crossref]

2004 (1)

2002 (1)

2001 (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Abd Alrahman, C.

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

Acedo, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref]

Adler, F.

Allen, C. N.

Allison, T. K.

Allodi, M. A.

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

Amani, M.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

Amarie, S.

F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
[Crossref]

Apolonski, A.

Araki, T.

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 061101 (2005).
[Crossref]

Askar, R.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

Bagnell, M.

A. Klee, J. Davila-Rodriguez, M. Bagnell, and P. J. Delfyett, “Self-referenced spectral phase retrieval of dissimilar optical frequency combs via multiheterodyne detection,” in IEEE Photonics Conference (IPC) (2012), pp. 491–492.

Balling, P.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Bartels, A.

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6  THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Baumann, E.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[Crossref]

Beck, M.

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

Beling, A.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Bernier, M.

Bhattacharya, N.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Bicer, A.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

Bielska, K.

Bjork, B.

Bjork, B. J.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Blake, G. A.

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Bliss, D.

Boudreau, S.

Bounds, J.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

Brehm, M.

Briles, T. C.

Bui, T. Q.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Byer, R. L.

Cahyadi, H.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Campbell, J. C.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Carlson, D. R.

D. R. Carlson, T.-H. Wu, and R. J. Jones, “Dual-comb intracavity high harmonic generation,” in Frontiers in Optics (OSA, 2014), paper FTh1A.2.

Carrier, J.-R.

Carroll, P. B.

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

Cassinerio, M.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
[Crossref]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Chandler, D. W.

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136, 154201 (2012).
[Crossref]

Charlebois, M.

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Chen, Y.

Coddington, I.

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Coluccelli, N.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
[Crossref]

Cossel, K. C.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Cristescu, S. M.

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy,” Appl. Phys. B 119, 65–74 (2015).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
[Crossref]

Cromer, C.

Cruz, F. C.

Davila-Rodriguez, J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19, 1100711 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, M. Bagnell, and P. J. Delfyett, “Self-referenced spectral phase retrieval of dissimilar optical frequency combs via multiheterodyne detection,” in IEEE Photonics Conference (IPC) (2012), pp. 491–492.

Dekorsy, T.

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6  THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Delfyett, P. J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19, 1100711 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, M. Bagnell, and P. J. Delfyett, “Self-referenced spectral phase retrieval of dissimilar optical frequency combs via multiheterodyne detection,” in IEEE Photonics Conference (IPC) (2012), pp. 491–492.

Deschênes, J.-D.

Deutsch, C.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Diddams, S. A.

Dinkelaker, A.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Dinneen, T.

Douglass, K. O.

Drachenko, O.

Duncker, H.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Durán, V.

Duval, S.

Faist, J.

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

Fang, X.

Fejer, M. M.

Ferdous, F.

Fermann, M.

Fermann, M. E.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23, 26596–26603 (2015).
[Crossref]

C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett. 37, 2928–2930 (2012).
[Crossref]

C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Advances in Optical Materials (Optical Society of America, 2011), paper FWA2.

Fill, E.

Finneran, I. A.

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

Fleisher, A. J.

Foltynowicz, A.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection,” Appl. Phys. B 119, 87–96 (2015).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[Crossref]

Forget, N.

Fortin, V.

Galzerano, G.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
[Crossref]

Gambetta, A.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
[Crossref]

Gardiner, T.

Gebs, R.

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6  THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

Genest, J.

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
[Crossref]

S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22, 8101–8113 (2014).
[Crossref]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775  nm,” Opt. Express 21, 30707–30715 (2013).
[Crossref]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21, 7411–7418 (2013).
[Crossref]

S. Potvin, S. Boudreau, J.-D. Deschênes, and J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52, 248–255 (2013).
[Crossref]

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20, 3066–3075 (2012).
[Crossref]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
[Crossref]

S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20, 7375–7387 (2012).
[Crossref]

J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).
[Crossref]

M. Godbout, J.-D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18, 15981–15989 (2010).
[Crossref]

P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).
[Crossref]

Giaccari, P.

Giaccarri, P.

Giorgetta, F. R.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[Crossref]

Giunta, M.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Goda, K.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy,” arXiv: 1512.00979 (2015).

Godbout, M.

Gohle, C.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref]

Golling, M.

Good, J. T.

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

Griebner, U.

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

Grilli, R.

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

Gu, C.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

Haensch, T. W.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Hall, J. L.

J. L. Hall, “Nobel lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[Crossref]

Han, S.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Hansch, T. W.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

Harren, F. J. M.

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy,” Appl. Phys. B 119, 65–74 (2015).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
[Crossref]

Harris, J. S.

Hartl, I.

Haseth, J. A.

P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

Hashimoto, M.

Hati, A.

Hayashi, K.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Hellmig, O.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Helm, M.

Hindle, F.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

Hipke, A.

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

Hochrein, T.

Hodges, J. T.

Holland, D. B.

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18, 1613–1617 (2010).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref]

Holzwarth, R. D.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Hong, F.-L.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Horsten, R. C.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Hosaka, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Hsieh, Y.-D.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

Hu, G.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Hu, T.

Huang, C.-B.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Hudson, D. D.

Hugi, A.

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

Ichikawa, R.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy,” arXiv: 1512.00979 (2015).

Ihara, A.

Inaba, H.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref]

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

Iwata, T.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Iyonaga, Y.

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

Jackson, S. D.

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Jang, H.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Jang, Y.-S.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Janke, C.

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6  THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Jerez, B.

Jiang, J.

Jin, Y.

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy,” Appl. Phys. B 119, 65–74 (2015).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
[Crossref]

Johansson, A. C.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection,” Appl. Phys. B 119, 87–96 (2015).
[Crossref]

Johnson, T.

Jones, R. J.

D. R. Carlson, T.-H. Wu, and R. J. Jones, “Dual-comb intracavity high harmonic generation,” in Frontiers in Optics (OSA, 2014), paper FTh1A.2.

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
[Crossref]

Kang, K.-I.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Kassi, S.

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

Kawamoto, K.

Kazakov, D.

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

Keilmann, F.

Kelessides, V.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

Keller, U.

Kelley, M. J.

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

Khader, I. H.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Khodabakhsh, A.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection,” Appl. Phys. B 119, 87–96 (2015).
[Crossref]

Kim, S.-W.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Kim, Y.-J.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Klatt, G.

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6  THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

Klee, A.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19, 1100711 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, M. Bagnell, and P. J. Delfyett, “Self-referenced spectral phase retrieval of dissimilar optical frequency combs via multiheterodyne detection,” in IEEE Photonics Conference (IPC) (2012), pp. 491–492.

Klenner, A.

Klopp, P.

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

Klose, A.

Kobayashi, Y.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21, 11141–11149 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy,” arXiv: 1512.00979 (2015).

Koch, M.

Kofler, J.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

Kohfeldt, A.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Kolomenskii, A. A.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

Kourogi, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Kowzan, G.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

Kraetschmer, T.

Krausz, F.

Kren, P.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Krumbholz, N.

Krutzik, M.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Kuse, N.

Langrock, C.

Laporta, P.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
[Crossref]

Leaird, D. E.

Lee, J.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lee, K.

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lee, K. F.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23, 26596–26603 (2015).
[Crossref]

Lee, S.-H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lee, S.-J.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Leindecker, N.

Levasseur, S.

Lezius, M.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Li, C.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Li, Z.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Lim, C.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Lin, A. C.

Link, S. M.

Liu, T.-A.

J.-L. Peng, T.-A. Liu, and R.-H. Shu, “Optical frequency counter based on two mode-locked fiber laser combs,” Appl. Phys. B 92, 513–518 (2008).
[Crossref]

T.-A. Liu, R.-H. Shu, and J.-L. Peng, “Semi-automatic, octave-spanning optical frequency counter,” Opt. Express 16, 10728–10735 (2008).
[Crossref]

Liu, Y.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Long, D. A.

Mandel, O.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Mandon, J.

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy,” Appl. Phys. B 119, 65–74 (2015).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

Mangold, M.

Marandi, A.

Martin-Mateos, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

Martín-Mateos, P.

Maser, D. L.

Mašika, P.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Maslowski, P.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[Crossref]

Maxwell, S. E.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Meek, S. A.

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

Mei, M.

Méjean, G.

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

Michaud-Belleau, V.

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Mills, A. A.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

Minoshima, K.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref]

Mizutani, Y.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Mohamed, T.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

Mohr, C.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23, 26596–26603 (2015).
[Crossref]

C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett. 37, 2928–2930 (2012).
[Crossref]

C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Advances in Optical Materials (Optical Society of America, 2011), paper FWA2.

Nagel, M.

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

Nakamura, T.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy,” arXiv: 1512.00979 (2015).

Neely, T.

Newbury, N. R.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Nicholson, J. W.

Nose, M.

Nugent-Glandorf, L.

Ohtsu, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Okubo, S.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
[Crossref]

Okumura, M.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Onae, A.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
[Crossref]

Ozawa, A.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21, 11141–11149 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Pan, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

Pan, Y.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Peng, J.-L.

J.-L. Peng, T.-A. Liu, and R.-H. Shu, “Optical frequency counter based on two mode-locked fiber laser combs,” Appl. Phys. B 92, 513–518 (2008).
[Crossref]

T.-A. Liu, R.-H. Shu, and J.-L. Peng, “Semi-automatic, octave-spanning optical frequency counter,” Opt. Express 16, 10728–10735 (2008).
[Crossref]

Perilla, C.

Persijn, S. T.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Peters, A.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Petron, G.

Phillips, C. R.

Piché, M.

Picque, N.

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Plusquellic, D. F.

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
[Crossref]

Posada-Roman, J.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

Potvin, S.

Pronin, O.

Reber, M. A. R.

Reid, D. T.

Rieker, G. B.

Romanini, D.

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

Romann, A.

C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Advances in Optical Materials (Optical Society of America, 2011), paper FWA2.

Roy, J.

Roy, S.

Ruehl, A.

C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Advances in Optical Materials (Optical Society of America, 2011), paper FWA2.

Ruiz-Llata, M.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

Rutkowski, L.

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

Sakaguchi, Y.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

Sanders, S. T.

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 061101 (2005).
[Crossref]

Sasada, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Saucier, P.

Schäfer, H.

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

Schiemangk, M.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Schiller, S.

Schkolnik, V.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
[Crossref]

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[Crossref]

Schuessler, H. A.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

Schunemann, P. G.

Seidel, M.

Sengstock, K.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Shu, R.-H.

J.-L. Peng, T.-A. Liu, and R.-H. Shu, “Optical frequency counter based on two mode-locked fiber laser combs,” Appl. Phys. B 92, 513–518 (2008).
[Crossref]

T.-A. Liu, R.-H. Shu, and J.-L. Peng, “Semi-automatic, octave-spanning optical frequency counter,” Opt. Express 16, 10728–10735 (2008).
[Crossref]

Sinclair, L. C.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

Snure, M.

Sonderhouse, L.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Sorokin, E.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

Sorokina, I. T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

Soskind, M. G.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104, 031114 (2014).
[Crossref]

Stein, B.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Strecker, K. E.

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136, 154201 (2012).
[Crossref]

Strohaber, J.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

Süess, M. J.

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

Sun, J.

Swann, W. C.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Sweeney, C.

Tainta, S.

Tans, P. P.

Thaller, A.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Tilma, B. W.

Torres-Company, V.

Tournois, P.

Tremblay, P.

Udem, T.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Urbach, H. P.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Vallée, R.

van der Weide, D.

van der Weide, D. W.

Ventrillard, I.

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

Verret, L.-S.

Villares, G.

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

Vodopyanov, K. L.

von Ribbeck, H.-G.

Walewski, J. W.

Wang, C.

Wang, W.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104, 031114 (2014).
[Crossref]

Wang, Y.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104, 031114 (2014).
[Crossref]

Weiner, A. M.

Wicht, A.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Widiyatmoko, B.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Wilk, R.

Wilken, T.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Williams, C.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19, 1100711 (2013).
[Crossref]

Windpassinger, P.

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

Winnerl, S.

Wolf, J.

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

Wu, T.-H.

D. R. Carlson, T.-H. Wu, and R. J. Jones, “Dual-comb intracavity high harmonic generation,” in Frontiers in Optics (OSA, 2014), paper FTh1A.2.

Wysocki, G.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104, 031114 (2014).
[Crossref]

Yamamoto, H.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Yasui, T.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 061101 (2005).
[Crossref]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Ycas, G.

Ye, J.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Yokoyama, S.

T. Yasui, Y. Iyonaga, Y.-D. Hsieh, Y. Sakaguchi, F. Hindle, S. Yokoyama, T. Araki, and M. Hashimoto, “Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation,” Optica 2, 460–467 (2015).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
[Crossref]

Zaugg, C. A.

Zeitouny, M.

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Zhang, Z.

Zhao, B.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Zhao, X.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Zheng, Z.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

Zhu, F.

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

Zhu, M.

Znakovskaya, I.

Zolot, A. M.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

Ann. Phys. (1)

M. Zeitouny, P. Balling, P. Křen, P. Mašika, R. C. Horsten, S. T. Persijn, H. P. Urbach, and N. Bhattacharya, “Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser,” Ann. Phys. 525, 437–442 (2013).
[Crossref]

Annu. Rev. Anal. Chem. (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection,” Appl. Phys. B 119, 87–96 (2015).
[Crossref]

J.-L. Peng, T.-A. Liu, and R.-H. Shu, “Optical frequency counter based on two mode-locked fiber laser combs,” Appl. Phys. B 92, 513–518 (2008).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy,” Appl. Phys. B 119, 65–74 (2015).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4  μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100, 3–8 (2010).
[Crossref]

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  μm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Appl. Phys. Lett. (6)

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” Appl. Phys. Lett. 107, 251104 (2015).
[Crossref]

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55  μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104, 231102 (2014).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 061101 (2005).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).
[Crossref]

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102, 121116 (2013).
[Crossref]

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104, 031114 (2014).
[Crossref]

Electron. Lett. (1)

R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, and A. Bartels, “Time-domain terahertz spectroscopy based on asynchronous optical sampling with femtosecond semiconductor disk laser,” Electron. Lett. 46, 75–76 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with Cliff layer,” IEEE J. Quantum Electron. 46, 626–632 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary CW waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19, 1100711 (2013).
[Crossref]

G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 17, 159–168 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

J. Chem. Phys. (1)

D. W. Chandler and K. E. Strecker, “Dual-etalon frequency-comb cavity ringdown spectrometer,” J. Chem. Phys. 136, 154201 (2012).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Laser Phys. Lett. (1)

F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, and H. A. Schuessler, “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12, 095701 (2015).
[Crossref]

Nat. Commun. (2)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref]

Nat. Photonics (6)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Opt. Express (28)

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[Crossref]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775  nm,” Opt. Express 21, 30707–30715 (2013).
[Crossref]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21, 7411–7418 (2013).
[Crossref]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref]

M. Godbout, J.-D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18, 15981–15989 (2010).
[Crossref]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
[Crossref]

P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).
[Crossref]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6  THz spectral coverage,” Opt. Express 17, 22847–22854 (2009).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50  fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref]

J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).
[Crossref]

H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
[Crossref]

M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222–11233 (2006).
[Crossref]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref]

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23, 33184–33193 (2015).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18, 1613–1617 (2010).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011).
[Crossref]

K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23, 26596–26603 (2015).
[Crossref]

S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22, 8101–8113 (2014).
[Crossref]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23, 5521–5531 (2015).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010).
[Crossref]

T.-A. Liu, R.-H. Shu, and J.-L. Peng, “Semi-automatic, octave-spanning optical frequency counter,” Opt. Express 16, 10728–10735 (2008).
[Crossref]

V. Michaud-Belleau, J. Roy, S. Potvin, J.-R. Carrier, L.-S. Verret, M. Charlebois, J. Genest, and C. N. Allen, “Whispering gallery mode sensing with a dual frequency comb probe,” Opt. Express 20, 3066–3075 (2012).
[Crossref]

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21, 11141–11149 (2013).
[Crossref]

S. Boudreau and J. Genest, “Referenced passive spectroscopy using dual frequency combs,” Opt. Express 20, 7375–7387 (2012).
[Crossref]

Opt. Lett. (19)

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34, 3875–3877 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[Crossref]

I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39, 5471–5474 (2014).
[Crossref]

C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett. 37, 2928–2930 (2012).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40, 4226–4228 (2015).
[Crossref]

T. Kraetschmer, J. W. Walewski, and S. T. Sanders, “Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity,” Opt. Lett. 31, 3179–3181 (2006).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref]

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref]

Y. Jin, S. M. Cristescu, F. J. M. Harren, and J. Mandon, “Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy,” Opt. Lett. 39, 3270–3273 (2014).
[Crossref]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref]

T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett. 35, 1689–1691 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett. 35, 1395–1397 (2010).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37, 4847–4849 (2012).
[Crossref]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37, 4498–4500 (2012).
[Crossref]

Z. Zhang, C. Gu, J. Sun, C. Wang, T. Gardiner, and D. T. Reid, “Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy,” Opt. Lett. 37, 187–189 (2012).
[Crossref]

Z. Zhang, X. Fang, T. Gardiner, and D. T. Reid, “High-power asynchronous midinfrared optical parametric oscillator frequency combs,” Opt. Lett. 38, 2077–2079 (2013).
[Crossref]

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38, 3148–3150 (2013).
[Crossref]

Optica (4)

Phys. Rev. A (6)

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89, 023805 (2014).
[Crossref]

R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, and D. Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012).
[Crossref]

P. Masłowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93, 021802 (2016).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90, 011805 (2014).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

Phys. Rev. Lett. (4)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

I. A. Finneran, J. T. Good, D. B. Holland, P. B. Carroll, M. A. Allodi, and G. A. Blake, “Decade-spanning high-precision terahertz frequency comb,” Phys. Rev. Lett. 114, 163902 (2015).
[Crossref]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115, 103901 (2015).
[Crossref]

Rev. Mod. Phys. (2)

T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

J. L. Hall, “Nobel lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[Crossref]

Rev. Sci. Instrum. (3)

J. T. Good, D. B. Holland, I. A. Finneran, P. B. Carroll, M. J. Kelley, and G. A. Blake, “A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer,” Rev. Sci. Instrum. 86, 103107 (2015).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Sci. Rep. (4)

K. Lee, J. Lee, Y.-S. Jang, S. Han, H. Jang, Y.-J. Kim, and S.-W. Kim, “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate,” Sci. Rep. 5, 15726 (2015).
[Crossref]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 5134 (2014).

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5, 10786 (2015).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Other (10)

G. Villares, J. Wolf, D. Kazakov, M. J. Süess, A. Hugi, M. Beck, and J. Faist, “On-chip dual-comb based on quantum cascade laser frequency combs,” arXiv: 1510.09158 (2015).

A. Klee, J. Davila-Rodriguez, M. Bagnell, and P. J. Delfyett, “Self-referenced spectral phase retrieval of dissimilar optical frequency combs via multiheterodyne detection,” in IEEE Photonics Conference (IPC) (2012), pp. 491–492.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy,” arXiv: 1512.00979 (2015).

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fibre laser,” arXiv: 1602.07788 (2016).

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, M. Krutzik, A. Kohfeldt, A. Wicht, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, T. W. Haensch, and R. D. Holzwarth, “Frequency comb metrology in space,” presented at the 8th Symposium on Frequency Standards and Metrology, Potsdam, Germany, 2015.

C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Advances in Optical Materials (Optical Society of America, 2011), paper FWA2.

http://www.laserquantum.com/ .

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

D. R. Carlson, T.-H. Wu, and R. J. Jones, “Dual-comb intracavity high harmonic generation,” in Frontiers in Optics (OSA, 2014), paper FTh1A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Simple DCS concept. Two combs with repetition rates f r and f r + Δ f r are mixed and detected by a single photoreceiver. As a result of the comb structure, each pair of optical teeth yields an rf heterodyne signal at a unique rf frequency. These rf frequencies form an rf comb of spacing Δ f r . The rf teeth can be tightly packed such that > 10 5 comb teeth can be observed simultaneously. For much of the original DCS work, f r was typically 100    MHz and Δ f r was 100 Hz to 1 kHz, but these values can vary considerably across different frequency comb sources. (b) For spectroscopy, either one or both combs are passed through the sample. The resulting absorption (or phase shifts) on the comb teeth is encoded onto the corresponding amplitude (or phase) of the measured rf comb teeth.
Fig. 2.
Fig. 2. Spectral coverage of dual-comb spectroscopy demonstrations (top band) and underlying frequency comb technologies (bottom band). The span covers over 14 octaves across the THz, IR, and optical. DCS has also been proposed in the extreme UV [77]. Section 4 discusses some of these different demonstrations. PCA, photoconductive antenna; OPO, optical parametric oscillator; DFG, difference frequency generation; QCL, quantum cascade laser; SHG, second-harmonic generation; HHG, high-harmonic generation.
Fig. 3.
Fig. 3. (a) Two frequency combs (red and blue) are mixed to produce (b) the rf comb. Solid gray lines indicate filter functions applied in the rf and optical to avoid aliasing effects. (c) The equivalent time-domain picture showing the pulse-to-pulse walk-off between the two comb pulse trains. (d) The photoreceiver voltage output corresponds to the product of the two comb pulses, integrated over the receiver bandwidth. This output can be viewed in laboratory time, where the samples are at time intervals of 1 / f r , or in effective time, where the samples are at time intervals of Δ T (as with FTIR interferograms). In both time scales k is the sample number. The large “centerburst” corresponds to the simultaneous arrival of the two pulses. Also visible in the “tail” to the right is a weak ringing containing absorption information of the sample gas.
Fig. 4.
Fig. 4. Three different categories of DCS demonstrations. (a) Free-running combs can yield dual-comb spectra, but with low resolution, low frequency accuracy, and low SNR, since only limited signal averaging is possible; (b) mutually coherent combs can yield comb-tooth-resolved spectra that can be averaged for high SNR; and (c) fully referenced combs yield spectra with simultaneous high resolution, absolute frequency accuracy, and high SNR. Text boxes indicate some general rules of thumb for frequency combs based on mode-locked lasers.
Fig. 5.
Fig. 5. Signature of the full rotational band from the C-H overtone of HCN gas as measured in the dispersive dual-comb spectrometer configuration [19]. (a) The phase and amplitude signature at 100 MHz point spacing has a signal-to-noise ratio per point of 4000 with respect to unity transmission; (b) expanded view showing the spectral sampling points; (c) joint time–frequency domain signature from the short-time Fourier transform of the data that clearly shows the free-induction decay signals in the “P” and “R” branches as vertical stripes. The overall decay results from Doppler and collisional dephasing.
Fig. 6.
Fig. 6. Spectral SNR versus bandwidth for DCS demonstrations in the near-IR (NIR; yellow triangles) and mid-IR (MIR; red triangles). In the near-IR, data points include only experiments that enforced mutual coherence through either active phase/timing feedback [25], digital phase/timing correction [24], or analog adaptive sampling [42]. The solid triangles indicate that coherent averaging was implemented. Approximate regions of operation for FTIR and tunable laser spectroscopy (TLS) are added in blue. The number of spectral elements M is the bandwidth / f r , where f r is 100    MHz for most demonstrations shown here.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ν m f r 2 = f r 2 2 Δ f r ,
Δ T = Δ f r f r ( f r + Δ f r ) 1 m f r ,
SNR NEP 1 M P 1 P 2 NEP τ ,
SNR DynRange D M τ f r .

Metrics