Abstract

Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. This technology enables multimodality imaging, where low spatial coherence illumination is used for traditional high-speed videomicroscopy and high spatial coherence illumination is used to extract dynamic information of flow processes. Our implementation is based on a vertical external-cavity surface-emitting laser (VECSEL) architecture. This architecture uses a semiconductor gain module that is electrically pumped, mechanically compact, and supports continuous-wave emission. As an initial example, we perform dynamic multimodality biomedical imaging in Xenopus embryo (tadpole) hearts, an important animal model of human heart disease.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Endogenous contrast blood flow imaging in embryonic hearts using hemoglobin contrast subtraction angiography

Engin Deniz, Stephan Jonas, Mustafa Khokha, and Michael A. Choma
Opt. Lett. 37(14) 2979-2981 (2012)

Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system

Adrian Mariampillai, Beau A. Standish, Nigel R. Munce, Cristina Randall, George Liu, James Y. Jiang, Alex E. Cable, I. Alex Vitkin, and Victor X.D. Yang
Opt. Express 15(4) 1627-1638 (2007)

High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis

Victor X.D. Yang, Maggie L. Gordon, Emily Seng-Yue, Stewart Lo, Bing Qi, Julius Pekar, Alvin Mok, Brian C. Wilson, and I. Alex Vitkin
Opt. Express 11(14) 1650-1658 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007), Chap. 5.
  2. B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
    [Crossref]
  3. H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
    [Crossref]
  4. F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
    [Crossref]
  5. G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
    [Crossref]
  6. G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
    [Crossref]
  7. B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, Opt. Lett. 39, 4446 (2014).
    [Crossref]
  8. M. Nixon, B. Redding, A. Friesem, H. Cao, and N. Davidson, Opt. Lett. 38, 3858 (2013).
    [Crossref]
  9. A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
    [Crossref]
  10. B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, Opt. Lett. 33, 2719 (2008).
    [Crossref]
  11. A. Fercher and J. Briers, Opt. Commun. 37, 326 (1981).
    [Crossref]
  12. D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
    [Crossref]
  13. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, Appl. Opt. 37, 1770 (1998).
    [Crossref]
  14. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
    [Crossref]
  15. D. Lim, K. K. Chu, and J. Mertz, Opt. Lett. 33, 1819 (2008).
    [Crossref]
  16. J. Mertz, Nat. Methods 8, 811 (2011).
    [Crossref]

2014 (1)

2013 (1)

2012 (1)

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[Crossref]

2011 (2)

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

J. Mertz, Nat. Methods 8, 811 (2011).
[Crossref]

2010 (1)

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[Crossref]

2009 (3)

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
[Crossref]

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

2008 (3)

2004 (1)

A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
[Crossref]

1998 (1)

1981 (1)

A. Fercher and J. Briers, Opt. Commun. 37, 326 (1981).
[Crossref]

Bartoo, A. C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

Bastian, G.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
[Crossref]

Bellancourt, A.-R.

Boas, D. A.

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[Crossref]

Bozinovic, N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

Briers, J.

A. Fercher and J. Briers, Opt. Commun. 37, 326 (1981).
[Crossref]

Bromberg, Y.

Cao, H.

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, Opt. Lett. 39, 4446 (2014).
[Crossref]

M. Nixon, B. Redding, A. Friesem, H. Cao, and N. Davidson, Opt. Lett. 38, 3858 (2013).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[Crossref]

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

Choma, M. A.

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, Opt. Lett. 39, 4446 (2014).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[Crossref]

Chu, K. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

D. Lim, K. K. Chu, and J. Mertz, Opt. Lett. 33, 1819 (2008).
[Crossref]

Craggs, G.

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
[Crossref]

Davidson, N.

Dunn, A. K.

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[Crossref]

Fercher, A.

A. Fercher and J. Briers, Opt. Commun. 37, 326 (1981).
[Crossref]

Fischer, I.

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
[Crossref]

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
[Crossref]

Ford, T. N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

Foreman, H.

A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
[Crossref]

Friesem, A.

Garnache, A.

A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
[Crossref]

Gini, E.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007), Chap. 5.

Halldorsson, T.

Hoffmann, M.

Hoogland, S.

A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
[Crossref]

Hourtoule, C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

Keller, U.

Lemmer, U.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
[Crossref]

Liew, S. F.

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

Lim, D.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

D. Lim, K. K. Chu, and J. Mertz, Opt. Lett. 33, 1819 (2008).
[Crossref]

Maas, D. J. H. C.

Mandre, S. K.

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
[Crossref]

Mertz, J.

J. Mertz, Nat. Methods 8, 811 (2011).
[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

D. Lim, K. K. Chu, and J. Mertz, Opt. Lett. 33, 1819 (2008).
[Crossref]

Nixon, M.

Noh, H.

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

Peeters, M.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
[Crossref]

Peeters, M. L.

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

Petursson, P. R.

Redding, B.

Riechert, F.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
[Crossref]

Rooks, M. J.

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

Rudin, B.

Rutz, A.

Santos, S.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

Singh, S. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

Solomon, G. S.

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

Südmeyer, T.

Thienpont, H.

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
[Crossref]

Tropper, A.

A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
[Crossref]

Tschudi, T.

Verschaffelt, G.

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
[Crossref]

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
[Crossref]

Wang, L.

Wilcox, K.

A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
[Crossref]

Yang, J.-K.

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

G. Verschaffelt, G. Craggs, M. L. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Quantum Electron. 45, 249 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, IEEE J. Sel. Top. Quantum Electron. 15, 555 (2009).
[Crossref]

J. Biomed. Opt. (2)

D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 011109 (2010).
[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, J. Biomed. Opt. 14, 030502 (2009).
[Crossref]

J. Phys. D (1)

A. Tropper, H. Foreman, A. Garnache, K. Wilcox, and S. Hoogland, J. Phys. D 37, R75 (2004).
[Crossref]

Nat. Methods (1)

J. Mertz, Nat. Methods 8, 811 (2011).
[Crossref]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012).
[Crossref]

Opt. Commun. (2)

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, Opt. Commun. 281, 4424 (2008).
[Crossref]

A. Fercher and J. Briers, Opt. Commun. 37, 326 (1981).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

H. Noh, J.-K. Yang, S. F. Liew, M. J. Rooks, G. S. Solomon, and H. Cao, Phys. Rev. Lett. 106, 183901 (2011).
[Crossref]

Other (1)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007), Chap. 5.

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (2973 KB)      side-by-side activity image
» Visualization 2: AVI (2400 KB)      overlay activity image

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the degenerate laser cavity (not to scale) with: VECSEL, lens 1 (high numerical aperture), aperture, lens 2 (reimaging lens), and output coupler (OC) mirror. (a) In multimode operation locations on the VECSEL will be imaged onto the OC and vice versa, yielding a large number of independent spatial modes (low spatial coherence). (b) For few-mode operation an aperture is introduced in the mutual focal plane of lens 1 and lens 2, yielding plane-wave emission through the OC (high spatial coherence).

Fig. 2.
Fig. 2.

(a) Output optical power as a function of electrical pump power of the degenerate VECSEL, with (triangles) and without (squares) a pinhole inside the cavity. Inset: top view of the large-area VECSEL gain module with electrical contacts. The dashed–dotted line highlights an active region with a diameter of 450 μm. (b) Emission spectrum of degenerate VECSEL at the electrical pump power of 4.0 W, showing a lasing peak of width 0.6    nm . (c) [(d)] speckle pattern produced by the output beam transmitting through a ground-glass diffuser. Low [high] speckle contrast results from the low [high] spatial coherence of laser emission. Insets: angular spectrum of the output beam recorded at the back focal plane of a lens whose front focal plane coincides with the output coupler. Broad (narrow) angular spectrum indicates a large (small) number of spatial modes in multimode (few-mode) operation. Scale bars correspond to 0.4°

Fig. 3.
Fig. 3.

(a) Xenopus embryo with highlighted heart region. (b) Xenopus heart cycle, determined by speckle contrast over time, recorded for ventricle (blue solid) and conus arteriosus (red dashed). (c) Embryo heart under highly coherent illumination. (d)–(f) Speckle-free imaging with low-coherence illumination produces structural images of the tadpole heart with outlines of ventricle and conus arteriosus, at different phases of the heart beat. (g)–(i) Spatially resolved speckle contrast, calculated from speckled images as in (c), enables the characterization of blood flow in the corresponding vessels ( 20 × 29 segments, cubic interpolation). (d), (g) ventricle is filling (diastole, t 1 = 0    ms ); (e), (h) ventricle empties into artery system (systole, t 2 = 150    ms ), (f), (i) empty ventricle, blood flows out into the vessels of the tadpole (end-systole, t 3 = 430    ms ). Visualization 1 (Visualization 2) shows a side-by-side (overlay) video of data in (d)–(f) and (g)–(i).

Metrics