Abstract

Reconfigurable photonic devices capable of routing the flow of light enable flexible integrated-optic circuits that are not hardwired but can be externally controlled. Analogous to free-space spatial light modulators, we demonstrate all-optical wavefront shaping in integrated silicon-on-insulator photonic devices by modifying the spatial refractive index profile of the device employing ultraviolet pulsed laser excitation. Applying appropriate excitation patterns grants us full control over the optical transfer function of telecommunication-wavelength light traveling through the device, thus allowing us to redefine its functionalities. As a proof of concept, we experimentally demonstrate the routing of light between the ports of a multimode interference power splitter with more than 97% total efficiency and negligible losses. Wavefront shaping in integrated photonic circuits provides a conceptually new approach toward achieving highly adaptable and field-programmable photonic circuits with applications in optical testing and data communication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically reconfigurable integrated optical circulators

Duanni Huang, Paolo Pintus, Chong Zhang, Paul Morton, Yuya Shoji, Tetsuya Mizumoto, and John E. Bowers
Optica 4(1) 23-30 (2017)

Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits

Changming Chen, Xiaoyan Niu, Chao Han, Zuosen Shi, Xinbin Wang, Xiaoqiang Sun, Fei Wang, Zhanchen Cui, and Daming Zhang
Opt. Express 22(17) 19895-19911 (2014)

All-optical switching on a silicon chip

Vilson R. Almeida, Carlos A. Barrios, Roberto R. Panepucci, Michal Lipson, Mark A. Foster, Dimitre G. Ouzounov, and Alexander L. Gaeta
Opt. Lett. 29(24) 2867-2869 (2004)

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref]
  2. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  3. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
    [Crossref]
  4. A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
    [Crossref]
  5. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [Crossref]
  6. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [Crossref]
  7. Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [Crossref]
  8. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
    [Crossref]
  9. R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
    [Crossref]
  10. V. Liu, Y. J. Liao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011).
    [Crossref]
  11. V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20, 28388–28397 (2012).
    [Crossref]
  12. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
    [Crossref]
  13. Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1, e38 (2012).
    [Crossref]
  14. D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21, 14223–14243 (2013).
    [Crossref]
  15. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  16. R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
    [Crossref]
  17. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [Crossref]
  18. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
  19. T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, “An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial,” Light Sci. Appl. 3, e207 (2014).
    [Crossref]
  20. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–2875 (2001).
    [Crossref]
  21. J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19, 700–707 (2001).
    [Crossref]
  22. S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
    [Crossref]
  23. A. M. Al-hetar, A. S. M. Supaat, A. B. Mohammad, and I. Yulianti, “Multimode interference photonic switches,” Opt. Eng. 47, 112001 (2008).
    [Crossref]
  24. D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
    [Crossref]
  25. A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
    [Crossref]
  26. D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
  27. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16, 19779–19784 (2008).
    [Crossref]
  28. T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFF4.
  29. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref]
  30. D. Brady and D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
    [Crossref]
  31. J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
    [Crossref]
  32. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
    [Crossref]
  33. http://dx.doi.org/10.5258/SOTON/384788 .

2016 (1)

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

2015 (4)

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
[Crossref]

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

2014 (1)

T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, “An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial,” Light Sci. Appl. 3, e207 (2014).
[Crossref]

2013 (1)

2012 (5)

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1, e38 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20, 28388–28397 (2012).
[Crossref]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

2011 (3)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

V. Liu, Y. J. Liao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011).
[Crossref]

A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
[Crossref]

2010 (4)

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

2009 (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

2008 (3)

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16, 19779–19784 (2008).
[Crossref]

A. M. Al-hetar, A. S. M. Supaat, A. B. Mohammad, and I. Yulianti, “Multimode interference photonic switches,” Opt. Eng. 47, 112001 (2008).
[Crossref]

2007 (1)

D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
[Crossref]

2005 (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

2002 (1)

2001 (2)

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–2875 (2001).
[Crossref]

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19, 700–707 (2001).
[Crossref]

1992 (1)

Al-hetar, A. M.

A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
[Crossref]

A. M. Al-hetar, A. S. M. Supaat, A. B. Mohammad, and I. Yulianti, “Multimode interference photonic switches,” Opt. Eng. 47, 112001 (2008).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Blasco, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Boller, K.-J.

Brady, D.

Bruck, R.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, “An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial,” Light Sci. Appl. 3, e207 (2014).
[Crossref]

Cao, Q.

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–2875 (2001).
[Crossref]

Capmany, J.

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

Choi, W.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

Choi, Y.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Daldosso, N.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Deane, J. H. B.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Fan, S.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Fedeli, J. M.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Fridman, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Gabrielli, L. H.

Gaeta, A. L.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Galán, J. V.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

García-Rupérez, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gardes, F. Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16, 19779–19784 (2008).
[Crossref]

Garrido, B.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gasulla, I.

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

Gautier, P.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Green, W. M.

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Guider, R.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gwilliam, R.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Headley, W. R.

Hernández, S.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Hoekman, M.

Hu, Y.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).

Hugonin, J. P.

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–2875 (2001).
[Crossref]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Inayoshi, H.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Johnson, S. G.

Johnson, T. J.

T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFF4.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Jordana, E.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Joyner, C. H.

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

Kim, M.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

Knights, A. P.

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Kuzucu, O.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lalanne, P.

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–2875 (2001).
[Crossref]

Lebour, Y.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19, 700–707 (2001).
[Crossref]

Liao, Y. J.

LiKamWa, P.

D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
[Crossref]

Lipson, M.

D. Liu, L. H. Gabrielli, M. Lipson, and S. G. Johnson, “Transformation inverse design,” Opt. Express 21, 14223–14243 (2013).
[Crossref]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Litvinenko, K. L.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Liu, D.

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Liu, V.

Lowery, A. J.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Luo, L.-W.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Martí, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Martinez, A.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Mashanovich, G. Z.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

May-Arrioja, D. A.

D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
[Crossref]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Miller, D. A. B.

Mills, B.

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, “An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial,” Light Sci. Appl. 3, e207 (2014).
[Crossref]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Mohammad, A. B.

A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
[Crossref]

A. M. Al-hetar, A. S. M. Supaat, A. B. Mohammad, and I. Yulianti, “Multimode interference photonic switches,” Opt. Eng. 47, 112001 (2008).
[Crossref]

Morishima, G.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Muskens, O. L.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, “An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial,” Light Sci. Appl. 3, e207 (2014).
[Crossref]

Nagai, S.

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Painter, O. J.

T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFF4.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Park, Q.-H.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

Passaro, V. M. N.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

Pavesi, L.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Pérez, D.

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Psaltis, D.

Reed, G. T.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16, 19779–19784 (2008).
[Crossref]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Roeloffzen, C. G. H.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

Sanchez-Mondragon, J. J.

D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
[Crossref]

Sanchis, P.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Selvas-Aguilar, R. J.

D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
[Crossref]

Shamsan, Z. A.

A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
[Crossref]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Sigmund, O.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Silberstein, E.

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–2875 (2001).
[Crossref]

Smith, A. J.

Spano, R.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Strudley, T.

T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, “An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial,” Light Sci. Appl. 3, e207 (2014).
[Crossref]

Supaat, A. S. M.

A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
[Crossref]

A. M. Al-hetar, A. S. M. Supaat, A. B. Mohammad, and I. Yulianti, “Multimode interference photonic switches,” Opt. Eng. 47, 112001 (2008).
[Crossref]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Thomson, D. J.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16, 19779–19784 (2008).
[Crossref]

Torres-Gomez, I.

D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
[Crossref]

Troia, B.

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

R. Bruck, B. Mills, D. J. Thomson, B. Troia, V. M. N. Passaro, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “Picosecond optically reconfigurable filters exploiting full free spectral range tuning of single ring and Vernier effect resonators,” Opt. Express 23, 12468–12477 (2015).
[Crossref]

Turpin, J. P.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1, e38 (2012).
[Crossref]

Utaka, K.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Van Thourhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Vlasov, Y.

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Wen, Y. H.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Werner, D. H.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1, e38 (2012).
[Crossref]

Wright, N. M.

Wu, Q.

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1, e38 (2012).
[Crossref]

Xia, F.

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Yoon, C.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

Yulianti, I.

A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
[Crossref]

A. M. Al-hetar, A. S. M. Supaat, A. B. Mohammad, and I. Yulianti, “Multimode interference photonic switches,” Opt. Eng. 47, 112001 (2008).
[Crossref]

Zhuang, L.

Appl. Phys. Lett. (1)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theory in integrated optics,” J. Opt. Soc. Am. A. 18, 2865–2875 (2001).
[Crossref]

Laser Photon. Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).
[Crossref]

Light Sci. Appl. (2)

Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl. 1, e38 (2012).
[Crossref]

T. Strudley, R. Bruck, B. Mills, and O. L. Muskens, “An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial,” Light Sci. Appl. 3, e207 (2014).
[Crossref]

Meas. Sci. Technol. (1)

D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18, 3241–3246 (2007).
[Crossref]

Nano Lett. (1)

A. Martinez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Nat. Photonics (9)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–187 (2010).
[Crossref]

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

R. Bruck, B. Mills, B. Troia, D. J. Thomson, F. Y. Gardes, Y. Hu, G. Z. Mashanovich, V. M. N. Passaro, G. T. Reed, and O. L. Muskens, “Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy,” Nat. Photonics 9, 54–60 (2015).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).

J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: the programmable processor,” Nat. Photonics 10, 6–8 (2016).
[Crossref]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Opt. Commun. (1)

A. M. Al-hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan, and I. Yulianti, “Fabrication and characterization of polymer thermo-optic switch based on MMI coupler,” Opt. Commun. 284, 1181–1185 (2011).
[Crossref]

Opt. Eng. (1)

A. M. Al-hetar, A. S. M. Supaat, A. B. Mohammad, and I. Yulianti, “Multimode interference photonic switches,” Opt. Eng. 47, 112001 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (1)

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Other (2)

http://dx.doi.org/10.5258/SOTON/384788 .

T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFF4.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2895 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Concept of wavefront shaping by ultrafast photomodulation spectroscopy. (a) In the experiments, transmission spectra of TE-polarized 150 fs probe pulses with a central wavelength of 1550 nm are monitored through a multimode interference (MMI) device. Simultaneously, a 2D pattern of 400 nm pump light is projected onto the device (blue overlay), locally decreasing the refractive index of the silicon MMI material by plasma dispersion. The pump beam is spatially modulated by employing a digital micromirror device (DMD), and the pattern of the DMD is imaged onto the MMI surface by means of a lens and a microscope objective. (b) Each point of the pump pattern induces a perturbation in the refractive index profile of the MMI, enabling coupling between MMI modes, thus allowing shaping of the mode interference pattern at the MMI output plane. (c) Visual representation of the power mode coupling matrix for refractive index perturbations ( Δ n = 0.25 , size 700    nm × 700    nm ) at two lateral positions. Calculated from a-FMM simulations, these values correspond to the fraction of power that is exchanged between modes due to the perturbation.

Fig. 2.
Fig. 2.

Numerical coupled-mode simulations. (a) Electric field maps of the unperturbed MMI (left) and the MMI with a perturbation pattern with Δ n = 0.25 (right), as indicated by the black overlay, from a-FMM simulations. The perturbation pattern was numerically optimized for maximum transmission into the upper MMI output port. (b) The injected light from the centrally placed input waveguide excites only even (symmetric) MMI modes at the input plane of the MMI (left graph). Due to the perturbation pattern, power is transferred from even modes (gray shades) into odd (antisymmetric) modes (cyan shades) as the light propagates through the MMI (center graph). The 10 lowest-order modes are plotted explicitly. For clarity, we combine the remaining nine MMI modes as they carry only a little energy (blue area). Losses due to the perturbation pattern are shown in red. The resulting mode distribution interferes at the output plane of the MMI and steers the light effectively toward the upper output. We compare this mode distribution with the numerically ideal mode distribution (right graph) for maximum overlap with the output waveguide mode. The insets depict cross-sectional electric field profiles of the MMI modes calculated with Comsol Multiphysics. (c), (d) Spectral behavior of the beam steering effect produced by the optimized perturbation pattern. Transmissions into the fundamental modes of the top ( T top , red curve) and bottom ( T bot , blue curve) output waveguides remain > 85 % and < 1 % for a 60 nm bandwidth, respectively. The spectrum of the unperturbed MMI ( T ref ) is shown as a black curve. The resulting transmission enhancement, Δ T / T = ( T top T ref ) / T ref , and suppression, Δ T / T = ( T bot T ref ) / T ref , are similarly broadband.

Fig. 3.
Fig. 3.

Digital micromirror device pattern optimization. (a) Experimental optimization run to maximize transmission in a wavelength window of 1550 ± 1.7    nm through the upper output port of the MMI. The individual regions (numbered from 1 to 9, 10 × 5    pixels each) are optimized individually in ascending order by performing 100 optimization steps in each region. In each step, a random pixel in the region under optimization is flipped, changing the transmission through the upper output port. The thin red line gives the change in transmission Δ T / T between the perturbed and unperturbed state for each step. Only pixels resulting in an increased Δ T / T are accepted (dots with thick red line), and the new DMD configuration is stored. In a subsequent measurement, all stored DMD configurations are reapplied while monitoring the lower MMI output (thick blue line). The excess losses induced in the MMI are calculated as the sum of Δ T / T of both outputs (thick gray line). After finishing the optimization run, we averaged 50 measurements with the final DMD configuration to determine the optimized Δ T / T for both ports minimally influenced by laser noise (horizontal dashed lines; shaded areas give the standard deviation). (b) SEM picture of the MMI device overlaid with the final DMD configuration (blue) and indications of the regions used for the optimization. (c)  Δ T / T spectra with the final DMD configuration for the two MMI outputs (thick solid lines; upper output red, lower output blue, shaded areas give the standard deviation), compared with simulated Δ T / T spectra from a-FMM (dashed lines) and the FDTD method (dotted lines). The red arrow and the gray shaded area indicate the wavelength window used for optimization. (d) Simulated electric field maps from a-FMM ( λ = 1550    nm ) for the MMI, where for each pixel of the experimentally optimized pattern (black overlay) the effective index is reduced by 0.25.

Fig. 4.
Fig. 4.

Time characteristics of excitation. (a)  Δ T / T values with DMD configurations after optimizations were performed for three different delay times (diamonds, 10 ps; circles, 50 ps; triangles, 150 ps; six values each). Thick horizontal lines give the group average, and the shaded areas indicate the standard deviation. (b)–(d) Time characteristics induced by different pump light patterns (thin lines) optimized at different delay times: (b) 10 ps, (c) 50 ps, (d) 150 ps. These curves are normalized to their individual Δ T / T maximum. Further, the averages (thick lines) of the six-curve groups are given. We note that the averages are based on normalized curves, but are not normalized themselves. Thus, they do not necessarily reach a value of 1 or 1 .

Fig. 5.
Fig. 5.

Contribution of individual MMI regions. (a) Average Δ T / T per region in the experiments presented in Fig. 4. The total Δ T / T achieved during the optimization is the sum of Δ T / T values in the individual regions. (b) Average numbers of pixels accepted per region during the optimization processes. (c) Map of the probability that individual pixels are accepted during optimization.

Metrics