Abstract

Understanding the interplay between optical pulse parameters and ultrafast material response is critical in achieving efficient and controlled laser nanomachining. In general, the key to initiate material processing is the deposition of a sufficient energy density within the electronic system. In dielectrics this critical energy density corresponds typically to a plasma frequency in the near-IR spectral region. Creating this density instantaneously with ultrashort laser pulses of a few tens of femtoseconds pulse duration in the same spectral region, the penetration depth into the material will strongly decrease with increasing electron density. Consequently, staying below this critical density will allow deep penetration depths. This calls for delayed ionization processes to deposit the energy for processing, thus introducing the temporal structure of the laser pulses as a control parameter. In this contribution we demonstrate this concept experimentally and substantiate the physical picture with numerical calculations. Bandwidth-limited pulses of 30 fs pulse duration are stretched up to 1.5 ps either temporally symmetrically or temporally asymmetrically. The interplay between pulse structure and material response is optimally exploited by the asymmetrically structured temporal Airy pulses leading to the inherently efficient creation of high aspect ratio nanochannels. Depths in the range of several micrometers and diameters around 250 nm are created within a single laser shot and without making use of self-focusing and filamentation processes. In addition to the machining of nanophotonic devices in dielectrics, the technique has the potential to enhance laser-based nanocell surgery and cell poration techniques.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold

Ricardo Elgul Samad, Sonia Licia Baldochi, and Nilson Dias Vieira, Jr.
Appl. Opt. 47(7) 920-924 (2008)

Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy

Moritz Grehn, Thomas Seuthe, Michael Höfner, Nils Griga, Christoph Theiss, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Eichler, and Jörn Bonse
Opt. Mater. Express 4(4) 689-700 (2014)

Femtosecond laser high-efficiency drilling of high-aspect-ratio microholes based on free-electron-density adjustments

Lan Jiang, Juqiang Fang, Qiang Cao, Kaihu Zhang, Peng Wang, Yanwu Yu, Qiang Huang, and Yongfeng Lu
Appl. Opt. 53(31) 7290-7295 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Baglin, “Ion beam nanoscale fabrication and lithography—a review,” Appl. Surf. Sci. 258, 4103–4111 (2012).
    [Crossref]
  2. M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
    [Crossref]
  3. K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Microfabrication (Springer, 2010).
  4. P. Ronchi, S. Terjung, and R. Pepperkok, “At the cutting edge: applications and perspectives of laser nanosurgery in cell biology,” Biol. Chem. 393, 235–248 (2012).
    [Crossref]
  5. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophoton. 2, 557–572 (2009).
    [Crossref]
  6. R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Temporal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, R. Hull, C. Jagadish, R. M. Osgood, J. Parisi, Z. Wang, and H. Warlimont, eds. (Springer, 2010), pp. 121–144.
  7. M. Wollenhaupt and T. Baumert, “Ultrafast laser control of electron dynamics in atoms, molecules and solids,” Faraday Discuss. Chem. Soc. 153, 9–26 (2011).
    [Crossref]
  8. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
    [Crossref]
  9. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [Crossref]
  10. B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
    [Crossref]
  11. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [Crossref]
  12. C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
    [Crossref]
  13. I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
    [Crossref]
  14. C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
    [Crossref]
  15. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
    [Crossref]
  16. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
    [Crossref]
  17. L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
    [Crossref]
  18. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
    [Crossref]
  19. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
    [Crossref]
  20. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [Crossref]
  21. M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
    [Crossref]
  22. M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4, 144–151 (2009).
    [Crossref]
  23. N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
    [Crossref]
  24. J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19, 11638–11653 (2011).
    [Crossref]
  25. N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).
  26. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18, 26007–26017 (2010).
    [Crossref]
  27. K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys. A 110, 601–605 (2013).
    [Crossref]
  28. E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
    [Crossref]
  29. L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
    [Crossref]
  30. T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).
  31. J. F. Herbstman and A. J. Hunt, “High-aspect ratio nanochannel formation by single femtosecond laser pulses,” Opt. Express 18, 16840–16848 (2010).
    [Crossref]
  32. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
    [Crossref]
  33. Y. V. White, X. Li, Z. Sikorski, L. M. Davis, and W. Hofmeister, “Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2,” Opt. Express 16, 14411–14420 (2008).
    [Crossref]
  34. B. Delobelle, R. Salut, F. Courvoisier, and P. Delobelle, “A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass,” Opt. Commun. 284, 5746–5757 (2011).
    [Crossref]
  35. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
    [Crossref]
  36. M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
    [Crossref]
  37. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  38. J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
    [Crossref]

2015 (3)

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

2014 (2)

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

2013 (4)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys. A 110, 601–605 (2013).
[Crossref]

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
[Crossref]

2012 (5)

L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
[Crossref]

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[Crossref]

P. Ronchi, S. Terjung, and R. Pepperkok, “At the cutting edge: applications and perspectives of laser nanosurgery in cell biology,” Biol. Chem. 393, 235–248 (2012).
[Crossref]

J. Baglin, “Ion beam nanoscale fabrication and lithography—a review,” Appl. Surf. Sci. 258, 4103–4111 (2012).
[Crossref]

2011 (5)

M. Wollenhaupt and T. Baumert, “Ultrafast laser control of electron dynamics in atoms, molecules and solids,” Faraday Discuss. Chem. Soc. 153, 9–26 (2011).
[Crossref]

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

B. Delobelle, R. Salut, F. Courvoisier, and P. Delobelle, “A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass,” Opt. Commun. 284, 5746–5757 (2011).
[Crossref]

J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19, 11638–11653 (2011).
[Crossref]

2010 (5)

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

J. F. Herbstman and A. J. Hunt, “High-aspect ratio nanochannel formation by single femtosecond laser pulses,” Opt. Express 18, 16840–16848 (2010).
[Crossref]

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18, 26007–26017 (2010).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
[Crossref]

2009 (2)

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4, 144–151 (2009).
[Crossref]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophoton. 2, 557–572 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (2)

C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
[Crossref]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[Crossref]

2005 (2)

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

2004 (1)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Assion, A.

C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
[Crossref]

Baglin, J.

J. Baglin, “Ion beam nanoscale fabrication and lithography—a review,” Appl. Surf. Sci. 258, 4103–4111 (2012).
[Crossref]

Balling, P.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys. A 110, 601–605 (2013).
[Crossref]

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Baumert, T.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[Crossref]

L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
[Crossref]

M. Wollenhaupt and T. Baumert, “Ultrafast laser control of electron dynamics in atoms, molecules and solids,” Faraday Discuss. Chem. Soc. 153, 9–26 (2011).
[Crossref]

J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19, 11638–11653 (2011).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4, 144–151 (2009).
[Crossref]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref]

C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
[Crossref]

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Temporal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, R. Hull, C. Jagadish, R. M. Osgood, J. Parisi, Z. Wang, and H. Warlimont, eds. (Springer, 2010), pp. 121–144.

Bayer, T.

Bhuyan, M. K.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

Bradby, J. E.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

Chimier, B.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Chowdhury, I. H.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophoton. 2, 557–572 (2009).
[Crossref]

Collins, A. R.

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

Colombier, J. P.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Corbett, B.

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Courvoisier, F.

B. Delobelle, R. Salut, F. Courvoisier, and P. Delobelle, “A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass,” Opt. Commun. 284, 5746–5757 (2011).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Davis, L. M.

Delobelle, B.

B. Delobelle, R. Salut, F. Courvoisier, and P. Delobelle, “A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass,” Opt. Commun. 284, 5746–5757 (2011).
[Crossref]

Delobelle, P.

B. Delobelle, R. Salut, F. Courvoisier, and P. Delobelle, “A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass,” Opt. Commun. 284, 5746–5757 (2011).
[Crossref]

Derrien, T. J.-Y.

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
[Crossref]

Dudley, J.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[Crossref]

Englert, L.

L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4, 144–151 (2009).
[Crossref]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref]

Ezquerra, T. A.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

Faure, N.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Frislev, M.

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys. A 110, 601–605 (2013).
[Crossref]

Furfaro, L.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Gamaly, E. G.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
[Crossref]

Götte, N.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Haag, L.

Haberl, B.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
[Crossref]

Herbstman, J. F.

Hernandez-Rueda, J.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

Hertel, I. V.

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Temporal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, R. Hull, C. Jagadish, R. M. Osgood, J. Parisi, Z. Wang, and H. Warlimont, eds. (Springer, 2010), pp. 121–144.

Hofmeister, W.

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

Horn, A.

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4, 144–151 (2009).
[Crossref]

Hossain, M. N.

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

Hunt, A. J.

Itina, T.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Jacquot, M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Jelzow, N.

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Juodkazis, S.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
[Crossref]

Justice, J.

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

Kieffer, J. C.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Köhler, J.

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[Crossref]

J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19, 11638–11653 (2011).
[Crossref]

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

Lacourt, P. A.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Lassonde, P.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Legare, F.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Li, X.

Lillevang, L. H.

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Liu, F.

Liu, X.

Liu, X. L.

Lovera, P.

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

Lu, X.

Ma, J. L.

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophoton. 2, 557–572 (2009).
[Crossref]

McCarthy, B.

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

Meunier, M.

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Microfabrication (Springer, 2010).

Mocek, T.

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
[Crossref]

O’Riordan, A.

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

Olivier, T.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Otto, D.

L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
[Crossref]

Pepperkok, R.

P. Ronchi, S. Terjung, and R. Pepperkok, “At the cutting edge: applications and perspectives of laser nanosurgery in cell biology,” Biol. Chem. 393, 235–248 (2012).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Pickard, C. J.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Piqué, A.

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Microfabrication (Springer, 2010).

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Rapp, L.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
[Crossref]

Rethfeld, B.

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
[Crossref]

Rode, A. V.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
[Crossref]

Ronchi, P.

P. Ronchi, S. Terjung, and R. Pepperkok, “At the cutting edge: applications and perspectives of laser nanosurgery in cell biology,” Biol. Chem. 393, 235–248 (2012).
[Crossref]

Roppo, V.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
[Crossref]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

Rostohar, D.

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Salut, R.

B. Delobelle, R. Salut, F. Courvoisier, and P. Delobelle, “A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass,” Opt. Commun. 284, 5746–5757 (2011).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Sanner, N.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Sarpe, C.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[Crossref]

L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
[Crossref]

J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19, 11638–11653 (2011).
[Crossref]

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Sarpe-Tudoran, C.

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref]

C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
[Crossref]

Schou, J.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

Senftleben, A.

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Sentis, M.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Siegel, J.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

Sikorski, Z.

Soccio, M.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[Crossref]

Solis, J.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

Stoian, R.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Temporal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, R. Hull, C. Jagadish, R. M. Osgood, J. Parisi, Z. Wang, and H. Warlimont, eds. (Springer, 2010), pp. 121–144.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Sugioka, K.

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Microfabrication (Springer, 2010).

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[Crossref]

Terjung, S.

P. Ronchi, S. Terjung, and R. Pepperkok, “At the cutting edge: applications and perspectives of laser nanosurgery in cell biology,” Biol. Chem. 393, 235–248 (2012).
[Crossref]

Tünnermann, A.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
[Crossref]

Uteza, O.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Velpula, P. K.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Vidal, F.

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[Crossref]

Waedegaard, K.

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys. A 110, 601–605 (2013).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

White, Y. V.

Williams, J. S.

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

Winkler, T.

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[Crossref]

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Winter, M.

C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
[Crossref]

Wollenhaupt, M.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[Crossref]

L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
[Crossref]

M. Wollenhaupt and T. Baumert, “Ultrafast laser control of electron dynamics in atoms, molecules and solids,” Faraday Discuss. Chem. Soc. 153, 9–26 (2011).
[Crossref]

J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19, 11638–11653 (2011).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
[Crossref]

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4, 144–151 (2009).
[Crossref]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[Crossref]

C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
[Crossref]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Temporal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, R. Hull, C. Jagadish, R. M. Osgood, J. Parisi, Z. Wang, and H. Warlimont, eds. (Springer, 2010), pp. 121–144.

Xi, T. T.

Xu, X.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Zhang, J.

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[Crossref]

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

Zielinksi, B.

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Zielinski, B.

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

ACS Appl. Mater. Interface (1)

J. Hernandez-Rueda, N. Götte, J. Siegel, M. Soccio, B. Zielinski, C. Sarpe, M. Wollenhaupt, T. A. Ezquerra, T. Baumert, and J. Solis, “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interface 7, 6613–6619 (2015).
[Crossref]

Appl. Phys. A (2)

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys. A 110, 601–605 (2013).
[Crossref]

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Appl. Phys. Lett. (5)

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88, 261109 (2006).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 021107 (2014).
[Crossref]

Appl. Surf. Sci. (2)

N. M. Bulgakova, V. P. Zhukov, A. R. Collins, D. Rostohar, T. J.-Y. Derrien, and T. Mocek, “How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?” Appl. Surf. Sci. 336, 364–374 (2015).

J. Baglin, “Ion beam nanoscale fabrication and lithography—a review,” Appl. Surf. Sci. 258, 4103–4111 (2012).
[Crossref]

Biol. Chem. (1)

P. Ronchi, S. Terjung, and R. Pepperkok, “At the cutting edge: applications and perspectives of laser nanosurgery in cell biology,” Biol. Chem. 393, 235–248 (2012).
[Crossref]

Faraday Discuss. Chem. Soc. (1)

M. Wollenhaupt and T. Baumert, “Ultrafast laser control of electron dynamics in atoms, molecules and solids,” Faraday Discuss. Chem. Soc. 153, 9–26 (2011).
[Crossref]

J. Biophoton. (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophoton. 2, 557–572 (2009).
[Crossref]

J. Laser Appl. (2)

L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 042002 (2012).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Nanogratings in fused silica: formation, control, and applications,” J. Laser Appl. 24, 042008 (2012).
[Crossref]

J. Laser Micro/Nanoeng. (1)

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4, 144–151 (2009).
[Crossref]

Nanotechnology (1)

M. N. Hossain, J. Justice, P. Lovera, B. McCarthy, A. O’Riordan, and B. Corbett, “High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask,” Nanotechnology 25, 355301 (2014).
[Crossref]

Nat. Commun. (1)

L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion,” Nat. Commun. 6, 7555 (2015).
[Crossref]

New J. Phys. (2)

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
[Crossref]

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[Crossref]

Opt. Commun. (2)

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

B. Delobelle, R. Salut, F. Courvoisier, and P. Delobelle, “A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass,” Opt. Commun. 284, 5746–5757 (2011).
[Crossref]

Opt. Express (5)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. B (2)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B 84, 094104 (2011).
[Crossref]

Phys. Rev. Lett. (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006).
[Crossref]

Proc. SPIE (1)

M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
[Crossref]

Quantum Electron. (1)

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[Crossref]

Rep. Prog. Phys. (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

Other (3)

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Microfabrication (Springer, 2010).

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Temporal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, R. Hull, C. Jagadish, R. M. Osgood, J. Parisi, Z. Wang, and H. Warlimont, eds. (Springer, 2010), pp. 121–144.

T. Winkler, C. Sarpe, N. Jelzow, L. H. Lillevang, N. Götte, B. Zielinksi, P. Balling, A. Senftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations, “ Appl. Surf. Sci., doi: 10.1016/j.apsusc.2015.11.182 (to be published).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1178 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for generating high aspect ratio nanochannels in fused silica together with a scanning electron micrograph of a created high aspect ratio channel (lower right). The measured spot diameter of 2 μm is indicated by the red arrows on the sample.

Fig. 2.
Fig. 2.

Machining results for (b), (c) bandwidth-limited pulses, (d) TAPs with φ 3 = 6 × 10 5    fs 3 , and (e) temporally symmetric pulses with φ 2 = 1.5 × 10 4    fs 2 at three different focus positions with respect to the surface of the fused silica sample as indicated in (a). For each focus position, scanning electron microscope images of cross-sections obtained by FIB milling (left) are compared to simulations (right). Experiments in (b), (d), and (e) were performed at approximately 2.5 × E thr for the corresponding pulse shape. Results for bandwidth-limited pulses approximately 6 times above their threshold and corresponding to the same pulse energy as used for shaped pulses in (d) are displayed in (c) showing shallow structures. The peak intensities of the applied pulses in the pulse pictograms are normalized to the simulated bandwidth-limited pulse shown in (b). The dark shaded areas close to the hole in the scanning electron microscope images are attributed to densified material after material processing. Vertical white lines in the middle column in (d) and (e) are FIB milling artifacts, and horizontal white bars in (d) and (e) indicate the measured hole depth.

Fig. 3.
Fig. 3.

Experimental hole depth (blue squares), simulated hole depth (solid blue line), and measured aspect ratio (green diamonds) with respect to focus position (minus/plus: focus below/above surface) for four different pulse shapes. (a)–(c) TAP shapes with decreasing TOD parameter and correspondingly decreasing statistical pulse duration [(a)  φ 3 = 6 × 10 5    fs 3 ; 1.5 ps, (b)  φ 3 = 3 × 10 5    fs 3 ; 770 fs, (c)  φ 3 = 1 × 10 5    fs 3 ; 260 fs], where the pulse duration in (a) corresponds to the data in Fig. 2(d). (d) Temporally symmetric pulse shape with φ 2 = 1.5 × 10 4    fs 2 (1.4 ps pulse duration) corresponding to the data shown in Fig. 2(e). Each set was recorded with a pulse energy 2.5 × E thr . All analyzed pulse shapes are identified by cross-correlation measurements and included as insets in (a)–(d). All cross-correlations are normalized in intensity. The time axes in (a)–(c) are shown for a range of 1 ps, whereas it is 4 ps in (d). Error bars stem from an inaccuracy of ± 0.5    μm for the focus position and from postmortem hole depth analysis. The aspect ratio is calculated as the hole depth divided by the full channel width at half depth.

Fig. 4.
Fig. 4.

(a) Cumulative simulated time-dependent total energy density W transferred to the fused silica sample for bandwidth-limited pulses (dotted line), TAPs with a TOD of φ 3 = 6 × 10 5    fs 3 (solid line), and temporally symmetric pulses with φ 2 = 1.5 × 10 4    fs 2 (dashed line), each at their corresponding ablation threshold E thr . For all pulse shapes the same accumulated energy density of W cr = 1.4 kJ cm 3 has been transferred at the end of the laser pulse. (b)–(d) Simulated time-dependent conduction band electron density (black line) in the first layer (1 nm) below the surface in the center of the laser pulse for (b) bandwidth-limited pulses, (c) TAPs with φ 3 = 6 × 10 5    fs 3 , and (d) GDD-shaped laser pulses with φ 2 = 1.5 × 10 4    fs 2 , each at their corresponding ablation threshold. The intensities of the temporal pulse shapes (red shaded, right y -axis) are normalized to the bandwidth-limited pulse in (b). Note the different plot range for (b) for conduction band electron density and the temporal close-up of the pulse shape. The black shaded area in (d) shows the part of the intensity that does not contribute to the ablation energy density.

Metrics