Abstract

Microwave photonics and optics-based analog links are technologies that are being developed for a growing number of applications. Photodetectors that operate at high power levels are key components. Additionally, it is important for many of these applications that the photodiodes have millimeter-wave bandwidths and highly linear response. This paper reviews the performance of modified uni-traveling carrier photodiodes with respect to these characteristics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode

Zhi Li, Yang Fu, Molly Piels, Huapu Pan, Andreas Beling, John E. Bowers, and Joe C. Campbell
Opt. Express 19(26) B385-B390 (2011)

Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model

Jin Li, Bing Xiong, Changzheng Sun, Di Miao, and Yi Luo
Opt. Express 23(17) 21615-21623 (2015)

Design of modified InGaAs/InP one-sided junction photodiodes with improved response at high light intensity

Jie Xu, Xiupu Zhang, and Ahmed Kishk
Appl. Opt. 57(31) 9365-9374 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. J. Urick, J. D. McKinney, and K. J. Williams, Fundamentals of Microwave Photonics, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2015), Chap. 10, pp. 383–427.
  2. M. R. Phillips and T. E. Darcie, “Lightwave analog video transmission,” Opt. Fiber Telecommun. IIIA, 523–559 (1997).
    [Crossref]
  3. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
    [Crossref]
  4. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol. 29, 1182–1205 (2011).
    [Crossref]
  5. R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
    [Crossref]
  6. T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett. 26, 1407–1410 (2014).
    [Crossref]
  7. C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60  GHz millimeter-wave WPAN, and ZigBee,” IEEE Wireless Commun. 14, 70–78 (2007).
  8. “Amendment of Parts 2, 15 and 97 of the Comission’s Rules to Permit Use of Radio Frequencies above 40  GHz For new Radio Applications,” Federal Communications Commission (1995).
  9. B. Wilson, Z. Ghassemloooy, and I. Darwazeh, Analogue Optical Fibre Communications (Institution of Electrical Engineers, 1995), Vol. 32.
  10. E. W. Jacobs, J. S. Rodgers, D. C. Evans, T. E. Weiner, and C. Lin, “Considerations for application of RF-over-fiber to navy systems,” in Avionics, Fiber-Optics and Photonics Technology Conference, October2, 2007, pp. 3–4.
  11. M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
    [Crossref]
  12. R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).
  13. J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
    [Crossref]
  14. B. Shillue, “Atacama large millimeter array photonic local oscillator: femtosecond-level synchronization for radio astronomy,” in IEEE International Frequency Control Symposium, Newport Beach, California, 2010, pp. 569–571.
  15. H. Kiuchi, M. Saito, and S. Iguchi, “Photonic local oscillator technics for large-scale interferometers,” Proc. SPIE 8444, 84442O (2012).
    [Crossref]
  16. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
    [Crossref]
  17. A. Campillo, E. E. Funk, D. A. Tulchinsky, J. L. Dexter, and K. J. Williams, “Phase performance of an eight-channel wavelength-division-multiplexed analog-delay line,” J. Lightwave Technol. 22, 440–447 (2004).
    [Crossref]
  18. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic radio frequency memory using frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32, 99–106 (2014).
    [Crossref]
  19. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  20. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [Crossref]
  21. Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microwave Theory Tech. 58, 3279–3289 (2010).
    [Crossref]
  22. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010).
    [Crossref]
  23. E. H. W. Chan, “Noise investigation of a large free spectral range high-resolution microwave photonic signal processor,” IEEE Photon. J. 5, 5502109 (2013).
    [Crossref]
  24. C. Wang and J. Yao, “Fiber Bragg gratings for microwave photonics subsystems,” Opt. Express 21, 22868–22884 (2013).
    [Crossref]
  25. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
    [Crossref]
  26. C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
    [Crossref]
  27. V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
    [Crossref]
  28. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
    [Crossref]
  29. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref]
  30. B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2001), Vol. 81.
  31. S. A. Pappert, R. Helkey, and R. T. Logan, “Photonic link techniques for microwave frequency conversion,” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed. (Cambridge University, 2002), pp. 293–333.
  32. A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26, 2718–2724 (2008).
    [Crossref]
  33. K. J. Williams and R. D. Esman, “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett. 8, 148–150 (1996).
    [Crossref]
  34. R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
    [Crossref]
  35. L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
    [Crossref]
  36. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
    [Crossref]
  37. K. J. Williams and R. D. Esman, “Design considerations for high current photodetectors,” J. Lightwave Technol. 17, 1443–1454 (1999).
    [Crossref]
  38. K. J. Williams, R. D. Esman, and M. Dagenais, “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett. 6, 639–641 (1994).
    [Crossref]
  39. M. Dentan and B. D. de Cremoux, “Numerical simulation of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8, 1137–1144 (1990).
    [Crossref]
  40. P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999).
    [Crossref]
  41. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.
  42. T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys. 36, 6263–6268 (1997).
    [Crossref]
  43. H. Ito and T. Nagatsuma, “High-speed and high-output-power unitraveling-carrier photodiodes,” Proc. SPIE 5246, 465–479 (2003).
    [Crossref]
  44. H. Ito, H. Fushimi, Y. Muramoto, T. Furuta, and T. Ishibashi, “High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode,” J. Lightwave Technol. 20, 1500–1505 (2002).
    [Crossref]
  45. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
    [Crossref]
  46. D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys. 45, 3475–3478 (2006).
    [Crossref]
  47. X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19, 1272–1274 (2007).
    [Crossref]
  48. N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
    [Crossref]
  49. N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150  GHz,” IEEE Photon. Technol. Lett. 10, 412–414 (1998).
    [Crossref]
  50. Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011).
    [Crossref]
  51. H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron. 45, 1537–1541 (2009).
    [Crossref]
  52. A. Beling, A. S. Cross, Q. Zhou, Y. Fu, and J. C. Campbell, “High-power flip-chip balanced photodetector with >40  GHz bandwidth,” in Photonics Conference (IEEE, 2013), pp. 352–353.
  53. A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21, 9967–9973 (2013).
    [Crossref]
  54. Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
    [Crossref]
  55. Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
    [Crossref]
  56. X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
    [Crossref]
  57. Q. Zhou, A. S. Cross, F. Yang, A. Beling, and J. C. Campbell, “Development of narrowband modified uni-travelling-carrier photodiodes with high power efficiency,” in Avionics, Fiber-Optics and Photonics Conference, San Diego, California, 2013, pp. 65–66.
  58. Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.
  59. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
    [Crossref]
  60. E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “170  GHz uni-traveling carrier photodiodes for InP-based photonic integrated circuits,” Opt. Express 20, 20090–20095 (2012).
    [Crossref]
  61. J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).
  62. K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
    [Crossref]
  63. X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.
  64. D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
    [Crossref]
  65. Y. Dai and J. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32, 3486–3488 (2007).
    [Crossref]
  66. H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19, 768–770 (2007).
    [Crossref]
  67. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38, 766–768 (2013).
    [Crossref]
  68. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
    [Crossref]
  69. X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
    [Crossref]
  70. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
    [Crossref]
  71. Z. Sen Lin, P. M. Lane, and J. J. O’Reilly, “Assessment of the nonlinearity tolerance of different modulation schemes for millimeter-wave fiber-radio systems using MZ modulators,” IEEE Trans. Microwave Theory Tech. 45, 1403–1409 (1997).
    [Crossref]
  72. K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE J. Lightwave Technol. 14, 84–96 (1996).
    [Crossref]
  73. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3  GHz fiber optic link,” IEEE J. Lightwave Technol. 16, 192–199 (1998).
    [Crossref]
  74. L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11, 111–113 (1999).
    [Crossref]
  75. K. J. Williams, D. A. Tulchinsky, and A. Hastings, “High-power and high-linearity photodiodes,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, California, 2008, pp. 290–291.
  76. J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).
  77. H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
    [Crossref]
  78. M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
    [Crossref]
  79. A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol. 26, 2373–2378 (2008).
    [Crossref]
  80. A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44, 1419–1420 (2008).
    [Crossref]
  81. H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization of high-linearity modified uni-traveling carrier photodiodes using three-tone and bias modulation techniques,” J. Lightwave Technol. 28, 2445–2455 (2010).
    [Crossref]
  82. M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.
  83. A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21, 1642–1644 (2009).
    [Crossref]
  84. H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber,” Opt. Express 17, 20221–20226 (2009).
    [Crossref]
  85. Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization and modeling nonlinear intermodulation distortions in uni-traveling carrier photodiodes,” J. Quantum Electron. 47, 1312–1319 (2011).
    [Crossref]
  86. X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).
  87. E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.
  88. V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “Wideband (0.045–6.25  GHz) 40 km analogue fibre-optic link with ultra-high (>40  dB) all-photonic gain,” Electron. Lett. 42, 552–553 (2006).
    [Crossref]
  89. Z. Yang, X. Xie, Q. Li, J. C. Campbell, and A. Beling, “20  GHz analog photonic link with 16  dB gain based on a high-power balanced photodiode,” in 6th International Conference on Photonics, October4, 2015, pp. 1–2.

2015 (2)

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

2014 (7)

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett. 26, 1407–1410 (2014).
[Crossref]

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic radio frequency memory using frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32, 99–106 (2014).
[Crossref]

2013 (7)

E. H. W. Chan, “Noise investigation of a large free spectral range high-resolution microwave photonic signal processor,” IEEE Photon. J. 5, 5502109 (2013).
[Crossref]

C. Wang and J. Yao, “Fiber Bragg gratings for microwave photonics subsystems,” Opt. Express 21, 22868–22884 (2013).
[Crossref]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[Crossref]

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38, 766–768 (2013).
[Crossref]

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21, 9967–9973 (2013).
[Crossref]

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

2012 (3)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “170  GHz uni-traveling carrier photodiodes for InP-based photonic integrated circuits,” Opt. Express 20, 20090–20095 (2012).
[Crossref]

H. Kiuchi, M. Saito, and S. Iguchi, “Photonic local oscillator technics for large-scale interferometers,” Proc. SPIE 8444, 84442O (2012).
[Crossref]

2011 (5)

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol. 29, 1182–1205 (2011).
[Crossref]

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011).
[Crossref]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization and modeling nonlinear intermodulation distortions in uni-traveling carrier photodiodes,” J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

2010 (3)

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization of high-linearity modified uni-traveling carrier photodiodes using three-tone and bias modulation techniques,” J. Lightwave Technol. 28, 2445–2455 (2010).
[Crossref]

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microwave Theory Tech. 58, 3279–3289 (2010).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010).
[Crossref]

2009 (5)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
[Crossref]

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber,” Opt. Express 17, 20221–20226 (2009).
[Crossref]

H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron. 45, 1537–1541 (2009).
[Crossref]

2008 (6)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol. 26, 2373–2378 (2008).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44, 1419–1420 (2008).
[Crossref]

A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26, 2718–2724 (2008).
[Crossref]

R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
[Crossref]

2007 (5)

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60  GHz millimeter-wave WPAN, and ZigBee,” IEEE Wireless Commun. 14, 70–78 (2007).

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
[Crossref]

Y. Dai and J. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32, 3486–3488 (2007).
[Crossref]

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19, 768–770 (2007).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19, 1272–1274 (2007).
[Crossref]

2006 (5)

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys. 45, 3475–3478 (2006).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “Wideband (0.045–6.25  GHz) 40 km analogue fibre-optic link with ultra-high (>40  dB) all-photonic gain,” Electron. Lett. 42, 552–553 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
[Crossref]

2004 (3)

A. Campillo, E. E. Funk, D. A. Tulchinsky, J. L. Dexter, and K. J. Williams, “Phase performance of an eight-channel wavelength-division-multiplexed analog-delay line,” J. Lightwave Technol. 22, 440–447 (2004).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

2003 (2)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

H. Ito and T. Nagatsuma, “High-speed and high-output-power unitraveling-carrier photodiodes,” Proc. SPIE 5246, 465–479 (2003).
[Crossref]

2002 (2)

2000 (1)

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

1999 (3)

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11, 111–113 (1999).
[Crossref]

P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999).
[Crossref]

K. J. Williams and R. D. Esman, “Design considerations for high current photodetectors,” J. Lightwave Technol. 17, 1443–1454 (1999).
[Crossref]

1998 (2)

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3  GHz fiber optic link,” IEEE J. Lightwave Technol. 16, 192–199 (1998).
[Crossref]

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150  GHz,” IEEE Photon. Technol. Lett. 10, 412–414 (1998).
[Crossref]

1997 (5)

Z. Sen Lin, P. M. Lane, and J. J. O’Reilly, “Assessment of the nonlinearity tolerance of different modulation schemes for millimeter-wave fiber-radio systems using MZ modulators,” IEEE Trans. Microwave Theory Tech. 45, 1403–1409 (1997).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys. 36, 6263–6268 (1997).
[Crossref]

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

M. R. Phillips and T. E. Darcie, “Lightwave analog video transmission,” Opt. Fiber Telecommun. IIIA, 523–559 (1997).
[Crossref]

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[Crossref]

1996 (4)

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

K. J. Williams and R. D. Esman, “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett. 8, 148–150 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE J. Lightwave Technol. 14, 84–96 (1996).
[Crossref]

1994 (1)

K. J. Williams, R. D. Esman, and M. Dagenais, “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett. 6, 639–641 (1994).
[Crossref]

1990 (1)

M. Dentan and B. D. de Cremoux, “Numerical simulation of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8, 1137–1144 (1990).
[Crossref]

Achouche, M.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Adesida, I.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys. 45, 3475–3478 (2006).
[Crossref]

Adleman, J. R.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

Bai, J.

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

Banfi, F.

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11, 111–113 (1999).
[Crossref]

Beling, A.

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21, 9967–9973 (2013).
[Crossref]

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization and modeling nonlinear intermodulation distortions in uni-traveling carrier photodiodes,” J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization of high-linearity modified uni-traveling carrier photodiodes using three-tone and bias modulation techniques,” J. Lightwave Technol. 28, 2445–2455 (2010).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber,” Opt. Express 17, 20221–20226 (2009).
[Crossref]

H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron. 45, 1537–1541 (2009).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44, 1419–1420 (2008).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol. 26, 2373–2378 (2008).
[Crossref]

A. Beling, A. S. Cross, Q. Zhou, Y. Fu, and J. C. Campbell, “High-power flip-chip balanced photodetector with >40  GHz bandwidth,” in Photonics Conference (IEEE, 2013), pp. 352–353.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

Z. Yang, X. Xie, Q. Li, J. C. Campbell, and A. Beling, “20  GHz analog photonic link with 16  dB gain based on a high-power balanced photodiode,” in 6th International Conference on Photonics, October4, 2015, pp. 1–2.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Q. Zhou, A. S. Cross, F. Yang, A. Beling, and J. C. Campbell, “Development of narrowband modified uni-travelling-carrier photodiodes with high power efficiency,” in Avionics, Fiber-Optics and Photonics Conference, San Diego, California, 2013, pp. 65–66.

Bernard, S.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Betts, G.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Bloch, J.

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Bogoni, A.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Bowers, J. E.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

Bres, C. S.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

Bucholtz, F.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol. 29, 1182–1205 (2011).
[Crossref]

V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “Wideband (0.045–6.25  GHz) 40 km analogue fibre-optic link with ultra-high (>40  dB) all-photonic gain,” Electron. Lett. 42, 552–553 (2006).
[Crossref]

Burns, W. K.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Campbell, J. C.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21, 9967–9973 (2013).
[Crossref]

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization and modeling nonlinear intermodulation distortions in uni-traveling carrier photodiodes,” J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization of high-linearity modified uni-traveling carrier photodiodes using three-tone and bias modulation techniques,” J. Lightwave Technol. 28, 2445–2455 (2010).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber,” Opt. Express 17, 20221–20226 (2009).
[Crossref]

H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron. 45, 1537–1541 (2009).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44, 1419–1420 (2008).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol. 26, 2373–2378 (2008).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19, 1272–1274 (2007).
[Crossref]

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Q. Zhou, A. S. Cross, F. Yang, A. Beling, and J. C. Campbell, “Development of narrowband modified uni-travelling-carrier photodiodes with high power efficiency,” in Avionics, Fiber-Optics and Photonics Conference, San Diego, California, 2013, pp. 65–66.

A. Beling, A. S. Cross, Q. Zhou, Y. Fu, and J. C. Campbell, “High-power flip-chip balanced photodetector with >40  GHz bandwidth,” in Photonics Conference (IEEE, 2013), pp. 352–353.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Z. Yang, X. Xie, Q. Li, J. C. Campbell, and A. Beling, “20  GHz analog photonic link with 16  dB gain based on a high-power balanced photodiode,” in 6th International Conference on Photonics, October4, 2015, pp. 1–2.

Campillo, A.

Campillo, A. L.

Capmany, J.

Carpentier, D.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Carpintero, G.

Chan, E. H. W.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic radio frequency memory using frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32, 99–106 (2014).
[Crossref]

E. H. W. Chan, “Noise investigation of a large free spectral range high-resolution microwave photonic signal processor,” IEEE Photon. J. 5, 5502109 (2013).
[Crossref]

Chang, W. S.

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Chen, H.

H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron. 45, 1537–1541 (2009).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44, 1419–1420 (2008).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol. 26, 2373–2378 (2008).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19, 1272–1274 (2007).
[Crossref]

Chen, N.

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Chen, S. B.

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Chen, Y.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

Chen, Y.-S.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Chi, H.

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19, 768–770 (2007).
[Crossref]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

Chtioui, M.

E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “170  GHz uni-traveling carrier photodiodes for InP-based photonic integrated circuits,” Opt. Express 20, 20090–20095 (2012).
[Crossref]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Clark, T. R.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett. 26, 1407–1410 (2014).
[Crossref]

Coldren, L. A.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

Cox, C.

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Cross, A. S.

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21, 9967–9973 (2013).
[Crossref]

Q. Zhou, A. S. Cross, F. Yang, A. Beling, and J. C. Campbell, “Development of narrowband modified uni-travelling-carrier photodiodes with high power efficiency,” in Avionics, Fiber-Optics and Photonics Conference, San Diego, California, 2013, pp. 65–66.

A. Beling, A. S. Cross, Q. Zhou, Y. Fu, and J. C. Campbell, “High-power flip-chip balanced photodetector with >40  GHz bandwidth,” in Photonics Conference (IEEE, 2013), pp. 352–353.

Dagenais, M.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE J. Lightwave Technol. 14, 84–96 (1996).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett. 6, 639–641 (1994).
[Crossref]

Dai, Y.

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microwave Theory Tech. 58, 3279–3289 (2010).
[Crossref]

Y. Dai and J. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32, 3486–3488 (2007).
[Crossref]

Darcie, T. E.

M. R. Phillips and T. E. Darcie, “Lightwave analog video transmission,” Opt. Fiber Telecommun. IIIA, 523–559 (1997).
[Crossref]

Darwazeh, I.

B. Wilson, Z. Ghassemloooy, and I. Darwazeh, Analogue Optical Fibre Communications (Institution of Electrical Engineers, 1995), Vol. 32.

de Cremoux, B. D.

M. Dentan and B. D. de Cremoux, “Numerical simulation of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8, 1137–1144 (1990).
[Crossref]

Demiguel, S.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11, 111–113 (1999).
[Crossref]

DenBaars, S. P.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

Dentan, M.

M. Dentan and B. D. de Cremoux, “Numerical simulation of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8, 1137–1144 (1990).
[Crossref]

Devagn, P. S.

V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
[Crossref]

Devenport, J.

Devgan, P. S.

Dexter, J. L.

Draa, M. N.

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Duan, N.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19, 1272–1274 (2007).
[Crossref]

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Enard, A.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Esman, R. D.

R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
[Crossref]

K. J. Williams and R. D. Esman, “Design considerations for high current photodetectors,” J. Lightwave Technol. 17, 1443–1454 (1999).
[Crossref]

P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999).
[Crossref]

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3  GHz fiber optic link,” IEEE J. Lightwave Technol. 16, 192–199 (1998).
[Crossref]

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[Crossref]

K. J. Williams and R. D. Esman, “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett. 8, 148–150 (1996).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE J. Lightwave Technol. 14, 84–96 (1996).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett. 6, 639–641 (1994).
[Crossref]

Evans, D. C.

E. W. Jacobs, J. S. Rodgers, D. C. Evans, T. E. Weiner, and C. Lin, “Considerations for application of RF-over-fiber to navy systems,” in Avionics, Fiber-Optics and Photonics Technology Conference, October2, 2007, pp. 3–4.

Fice, M. J.

Fish, G.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

Foley, B. M.

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

Frankel, M. Y.

P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999).
[Crossref]

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[Crossref]

Fu, Y.

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21, 9967–9973 (2013).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011).
[Crossref]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization and modeling nonlinear intermodulation distortions in uni-traveling carrier photodiodes,” J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

A. Beling, A. S. Cross, Q. Zhou, Y. Fu, and J. C. Campbell, “High-power flip-chip balanced photodetector with >40  GHz bandwidth,” in Photonics Conference (IEEE, 2013), pp. 352–353.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Fu, Z.

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

Funk, E. E.

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

H. Ito, H. Fushimi, Y. Muramoto, T. Furuta, and T. Ishibashi, “High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode,” J. Lightwave Technol. 20, 1500–1505 (2002).
[Crossref]

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150  GHz,” IEEE Photon. Technol. Lett. 10, 412–414 (1998).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys. 36, 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.

Fushimi, H.

Ghassemloooy, Z.

B. Wilson, Z. Ghassemloooy, and I. Darwazeh, Analogue Optical Fibre Communications (Institution of Electrical Engineers, 1995), Vol. 32.

Ghelfi, P.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Giraudet, L.

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11, 111–113 (1999).
[Crossref]

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010).
[Crossref]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

Hastings, A.

K. J. Williams, D. A. Tulchinsky, and A. Hastings, “High-power and high-linearity photodiodes,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, California, 2008, pp. 290–291.

Hastings, A. S.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

Helkey, R.

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

S. A. Pappert, R. Helkey, and R. T. Logan, “Photonic link techniques for microwave frequency conversion,” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed. (Cambridge University, 2002), pp. 293–333.

Herve-Gruyer, G.

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11, 111–113 (1999).
[Crossref]

Hopkins, P. E.

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

Huang, C.-B.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Huynh, C. K.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

Iguchi, S.

H. Kiuchi, M. Saito, and S. Iguchi, “Photonic local oscillator technics for large-scale interferometers,” Proc. SPIE 8444, 84442O (2012).
[Crossref]

Ishibashi, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

H. Ito, H. Fushimi, Y. Muramoto, T. Furuta, and T. Ishibashi, “High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode,” J. Lightwave Technol. 20, 1500–1505 (2002).
[Crossref]

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150  GHz,” IEEE Photon. Technol. Lett. 10, 412–414 (1998).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys. 36, 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.

Isshiki, T. D.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Ito, H.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

H. Ito and T. Nagatsuma, “High-speed and high-output-power unitraveling-carrier photodiodes,” Proc. SPIE 5246, 465–479 (2003).
[Crossref]

H. Ito, H. Fushimi, Y. Muramoto, T. Furuta, and T. Ishibashi, “High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode,” J. Lightwave Technol. 20, 1500–1505 (2002).
[Crossref]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.

Jacob-Mitos, M.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

Jacobs, E. W.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

E. W. Jacobs, J. S. Rodgers, D. C. Evans, T. E. Weiner, and C. Lin, “Considerations for application of RF-over-fiber to navy systems,” in Avionics, Fiber-Optics and Photonics Technology Conference, October2, 2007, pp. 3–4.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

Jang, J.-H.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys. 45, 3475–3478 (2006).
[Crossref]

Jiang, H.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

Johansson, L. A.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

Jones, V. L.

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

Jun, D.-H.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys. 45, 3475–3478 (2006).
[Crossref]

Karim, A.

Kinsey, G. S.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Kiuchi, H.

H. Kiuchi, M. Saito, and S. Iguchi, “Photonic local oscillator technics for large-scale interferometers,” Proc. SPIE 8444, 84442O (2012).
[Crossref]

Klamkin, J.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys. 36, 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.

Kvavle, J. M.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Lai, C.-H.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Lane, P. M.

Z. Sen Lin, P. M. Lane, and J. J. O’Reilly, “Assessment of the nonlinearity tolerance of different modulation schemes for millimeter-wave fiber-radio systems using MZ modulators,” IEEE Trans. Microwave Theory Tech. 45, 1403–1409 (1997).
[Crossref]

Leaird, D. E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010).
[Crossref]

Lelarge, F.

E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “170  GHz uni-traveling carrier photodiodes for InP-based photonic integrated circuits,” Opt. Express 20, 20090–20095 (2012).
[Crossref]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Lewis, J. B.

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

Li, G. L.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

Li, K.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Li, N.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Li, Q.

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

Z. Yang, X. Xie, Q. Li, J. C. Campbell, and A. Beling, “20  GHz analog photonic link with 16  dB gain based on a high-power balanced photodiode,” in 6th International Conference on Photonics, October4, 2015, pp. 1–2.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Li, W.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[Crossref]

Li, X.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Li, Z.

Liang, D.

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Lin, C.

E. W. Jacobs, J. S. Rodgers, D. C. Evans, T. E. Weiner, and C. Lin, “Considerations for application of RF-over-fiber to navy systems,” in Avionics, Fiber-Optics and Photonics Technology Conference, October2, 2007, pp. 3–4.

Liu, H.-Y.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Liu, P.-L.

P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999).
[Crossref]

Livingston, S.

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

Logan, R. T.

S. A. Pappert, R. Helkey, and R. T. Logan, “Photonic link techniques for microwave frequency conversion,” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed. (Cambridge University, 2002), pp. 293–333.

Loo, R. Y.

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

Lu, Z. W.

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

Maleki, L.

Matthews, P. J.

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[Crossref]

McKenna, T. P.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett. 26, 1407–1410 (2014).
[Crossref]

McKinney, J. D.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol. 29, 1182–1205 (2011).
[Crossref]

V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
[Crossref]

V. J. Urick, J. D. McKinney, and K. J. Williams, Fundamentals of Microwave Photonics, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2015), Chap. 10, pp. 383–427.

Minasian, R. A.

Muramoto, Y.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

H. Ito, H. Fushimi, Y. Muramoto, T. Furuta, and T. Ishibashi, “High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode,” J. Lightwave Technol. 20, 1500–1505 (2002).
[Crossref]

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

H. Ito and T. Nagatsuma, “High-speed and high-output-power unitraveling-carrier photodiodes,” Proc. SPIE 5246, 465–479 (2003).
[Crossref]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.

Nanzer, J. A.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett. 26, 1407–1410 (2014).
[Crossref]

Ng, W. W.

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

Nguyen, T. A.

Nichols, L. T.

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3  GHz fiber optic link,” IEEE J. Lightwave Technol. 16, 192–199 (1998).
[Crossref]

Norberg, E.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

Nunoya, N.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

O’Reilly, J. J.

Z. Sen Lin, P. M. Lane, and J. J. O’Reilly, “Assessment of the nonlinearity tolerance of different modulation schemes for millimeter-wave fiber-radio systems using MZ modulators,” IEEE Trans. Microwave Theory Tech. 45, 1403–1409 (1997).
[Crossref]

Ortega, B.

Pan, C.-L.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Pan, H.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization and modeling nonlinear intermodulation distortions in uni-traveling carrier photodiodes,” J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization of high-linearity modified uni-traveling carrier photodiodes using three-tone and bias modulation techniques,” J. Lightwave Technol. 28, 2445–2455 (2010).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber,” Opt. Express 17, 20221–20226 (2009).
[Crossref]

H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron. 45, 1537–1541 (2009).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44, 1419–1420 (2008).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol. 26, 2373–2378 (2008).
[Crossref]

Pan, S.

Pan, W.

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[Crossref]

Pappert, S. A.

S. A. Pappert, R. Helkey, and R. T. Logan, “Photonic link techniques for microwave frequency conversion,” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed. (Cambridge University, 2002), pp. 293–333.

Park, C.

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60  GHz millimeter-wave WPAN, and ZigBee,” IEEE Wireless Commun. 14, 70–78 (2007).

Pastor, D.

Phillips, M. R.

M. R. Phillips and T. E. Darcie, “Lightwave analog video transmission,” Opt. Fiber Telecommun. IIIA, 523–559 (1997).
[Crossref]

Piels, M.

Pommereau, F.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Prather, D. W.

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Radic, S.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

Ramaswamy, A.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

Rappaport, T. S.

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60  GHz millimeter-wave WPAN, and ZigBee,” IEEE Wireless Commun. 14, 70–78 (2007).

Regan, M. D.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Renaud, C. C.

Rodgers, J. S.

E. W. Jacobs, J. S. Rodgers, D. C. Evans, T. E. Weiner, and C. Lin, “Considerations for application of RF-over-fiber to navy systems,” in Avionics, Fiber-Optics and Photonics Technology Conference, October2, 2007, pp. 3–4.

Rogge, M. S.

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “Wideband (0.045–6.25  GHz) 40 km analogue fibre-optic link with ultra-high (>40  dB) all-photonic gain,” Electron. Lett. 42, 552–553 (2006).
[Crossref]

Rousseau, B.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

Roussell, H. V.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Rouvalis, E.

Saito, M.

H. Kiuchi, M. Saito, and S. Iguchi, “Photonic local oscillator technics for large-scale interferometers,” Proc. SPIE 8444, 84442O (2012).
[Crossref]

Schneider, G. J.

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

Scott, D. C.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Scotti, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Seeds, A. J.

Sen Lin, Z.

Z. Sen Lin, P. M. Lane, and J. J. O’Reilly, “Assessment of the nonlinearity tolerance of different modulation schemes for millimeter-wave fiber-radio systems using MZ modulators,” IEEE Trans. Microwave Theory Tech. 45, 1403–1409 (1997).
[Crossref]

Shen, Y.

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Shi, J.-W.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Shi, S.

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

Shillue, B.

B. Shillue, “Atacama large millimeter array photonic local oscillator: femtosecond-level synchronization for radio astronomy,” in IEEE International Frequency Control Symposium, Newport Beach, California, 2010, pp. 569–571.

Shimizu, N.

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150  GHz,” IEEE Photon. Technol. Lett. 10, 412–414 (1998).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys. 36, 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.

Shin, D. S.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

Shoop, B. L.

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2001), Vol. 81.

Song, J.-I.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys. 45, 3475–3478 (2006).
[Crossref]

Sudharsansan, R.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Tangonan, G. L.

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

Tulchinsky, D. A.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

A. Campillo, E. E. Funk, D. A. Tulchinsky, J. L. Dexter, and K. J. Williams, “Phase performance of an eight-channel wavelength-division-multiplexed analog-delay line,” J. Lightwave Technol. 22, 440–447 (2004).
[Crossref]

K. J. Williams, D. A. Tulchinsky, and A. Hastings, “High-power and high-linearity photodiodes,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, California, 2008, pp. 290–291.

Twichell, J. C.

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Urick, V. J.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol. 29, 1182–1205 (2011).
[Crossref]

V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “Wideband (0.045–6.25  GHz) 40 km analogue fibre-optic link with ultra-high (>40  dB) all-photonic gain,” Electron. Lett. 42, 552–553 (2006).
[Crossref]

V. J. Urick, J. D. McKinney, and K. J. Williams, Fundamentals of Microwave Photonics, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2015), Chap. 10, pp. 383–427.

Valley, G. C.

van Dijk, F.

Vang, T. A.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

Wang, C.

Wang, X.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19, 1272–1274 (2007).
[Crossref]

Wang, Y.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Watanabe, N.

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150  GHz,” IEEE Photon. Technol. Lett. 10, 412–414 (1998).
[Crossref]

Weiner, A. M.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010).
[Crossref]

Weiner, T. E.

E. W. Jacobs, J. S. Rodgers, D. C. Evans, T. E. Weiner, and C. Lin, “Considerations for application of RF-over-fiber to navy systems,” in Avionics, Fiber-Optics and Photonics Technology Conference, October2, 2007, pp. 3–4.

Wiberg, A. O. J.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

Williams, K. J.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol. 29, 1182–1205 (2011).
[Crossref]

V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
[Crossref]

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “Wideband (0.045–6.25  GHz) 40 km analogue fibre-optic link with ultra-high (>40  dB) all-photonic gain,” Electron. Lett. 42, 552–553 (2006).
[Crossref]

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

A. Campillo, E. E. Funk, D. A. Tulchinsky, J. L. Dexter, and K. J. Williams, “Phase performance of an eight-channel wavelength-division-multiplexed analog-delay line,” J. Lightwave Technol. 22, 440–447 (2004).
[Crossref]

P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999).
[Crossref]

K. J. Williams and R. D. Esman, “Design considerations for high current photodetectors,” J. Lightwave Technol. 17, 1443–1454 (1999).
[Crossref]

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3  GHz fiber optic link,” IEEE J. Lightwave Technol. 16, 192–199 (1998).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE J. Lightwave Technol. 14, 84–96 (1996).
[Crossref]

K. J. Williams and R. D. Esman, “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett. 8, 148–150 (1996).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett. 6, 639–641 (1994).
[Crossref]

V. J. Urick, J. D. McKinney, and K. J. Williams, Fundamentals of Microwave Photonics, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2015), Chap. 10, pp. 383–427.

K. J. Williams, D. A. Tulchinsky, and A. Hastings, “High-power and high-linearity photodiodes,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, California, 2008, pp. 290–291.

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Williamson, R. C.

Wilson, B.

B. Wilson, Z. Ghassemloooy, and I. Darwazeh, Analogue Optical Fibre Communications (Institution of Electrical Engineers, 1995), Vol. 32.

Wilson, J. P.

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

Woodsen, M. E.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

Wun, J.-M.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Xie, X.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

Z. Yang, X. Xie, Q. Li, J. C. Campbell, and A. Beling, “20  GHz analog photonic link with 16  dB gain based on a high-power balanced photodiode,” in 6th International Conference on Photonics, October4, 2015, pp. 1–2.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Yan, L.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[Crossref]

Yang, F.

Q. Zhou, A. S. Cross, F. Yang, A. Beling, and J. C. Campbell, “Development of narrowband modified uni-travelling-carrier photodiodes with high power efficiency,” in Avionics, Fiber-Optics and Photonics Conference, San Diego, California, 2013, pp. 65–66.

Yang, S.-D.

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

Yang, Z.

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

Z. Yang, X. Xie, Q. Li, J. C. Campbell, and A. Beling, “20  GHz analog photonic link with 16  dB gain based on a high-power balanced photodiode,” in 6th International Conference on Photonics, October4, 2015, pp. 1–2.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

Yao, J.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[Crossref]

C. Wang and J. Yao, “Fiber Bragg gratings for microwave photonics subsystems,” Opt. Express 21, 22868–22884 (2013).
[Crossref]

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microwave Theory Tech. 58, 3279–3289 (2010).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

Y. Dai and J. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32, 3486–3488 (2007).
[Crossref]

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19, 768–770 (2007).
[Crossref]

Yao, X. S.

Yen, H. W.

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

Yoshimatsu, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Yu, P. K. L.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

Zang, J.

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

Zhang, Y.

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38, 766–768 (2013).
[Crossref]

Zheng, X.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Zhou, Q.

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).

X. Xie, Q. Zhou, K. Li, Y. Shen, Q. Li, Z. Yang, A. Beling, and J. C. Campbell, “Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond,” Optica 1, 429–436 (2014).
[Crossref]

A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “High-power flip-chip mounted photodiode array,” Opt. Express 21, 9967–9973 (2013).
[Crossref]

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

Q. Zhou, A. S. Cross, F. Yang, A. Beling, and J. C. Campbell, “Development of narrowband modified uni-travelling-carrier photodiodes with high power efficiency,” in Avionics, Fiber-Optics and Photonics Conference, San Diego, California, 2013, pp. 65–66.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

A. Beling, A. S. Cross, Q. Zhou, Y. Fu, and J. C. Campbell, “High-power flip-chip balanced photodetector with >40  GHz bandwidth,” in Photonics Conference (IEEE, 2013), pp. 352–353.

Zlatanovic, S.

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

Zou, X.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[Crossref]

Electron. Lett. (3)

V. J. Urick, P. S. Devagn, J. D. McKinney, F. Bucholtz, and K. J. Williams, “Channelization of radio-frequency signals using optoelectronic oscillator,” Electron. Lett. 45, 1242–1244 (2009).
[Crossref]

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44, 1419–1420 (2008).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “Wideband (0.045–6.25  GHz) 40 km analogue fibre-optic link with ultra-high (>40  dB) all-photonic gain,” Electron. Lett. 42, 552–553 (2006).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

J. Bai, S. Shi, G. J. Schneider, J. P. Wilson, Y. Zhang, W. Pan, and D. W. Prather, “Optically driven ultrawideband phased array with an optical interleaving feed network,” IEEE Antennas Wireless Propag. Lett. 13, 47–50 (2014).
[Crossref]

IEEE J. Lightwave Technol. (3)

X. Xie, K. Li, Y. Shen, Q. Li, J. Zang, A. Beling, and J. C. Campbell, “Photonic generation of high-power pulsed microwave signals,” IEEE J. Lightwave Technol. 33, 3808–3814 (2015).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE J. Lightwave Technol. 14, 84–96 (1996).
[Crossref]

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3  GHz fiber optic link,” IEEE J. Lightwave Technol. 16, 192–199 (1998).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron. 45, 1537–1541 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).

IEEE Photon. J. (2)

Q. Zhou, A. S. Cross, Z. Fu, A. Beling, B. M. Foley, P. E. Hopkins, and J. C. Campbell, “Balanced InP/InGaAs photodiodes with 1.5-W output power,” IEEE Photon. J. 5, 6800307 (2013).
[Crossref]

E. H. W. Chan, “Noise investigation of a large free spectral range high-resolution microwave photonic signal processor,” IEEE Photon. J. 5, 5502109 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (15)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[Crossref]

C. S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photon. Technol. Lett. 23, 344–346 (2011).
[Crossref]

K. J. Williams and R. D. Esman, “Optically amplified downconverting link with shot-noise-limited performance,” IEEE Photon. Technol. Lett. 8, 148–150 (1996).
[Crossref]

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett. 26, 1407–1410 (2014).
[Crossref]

K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, and Z. Yang, “A. Beling and J. C. Campbell, “High-power photodiode integrated with coplanar patch antenna for 60-GHz applications,” IEEE Photon. Technol. Lett. 27, 650–653 (2015).
[Crossref]

Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. W. Lu, and J. C. Campbell, “High-power V-band InGaAs/InP photodiodes,” IEEE Photon. Technol. Lett. 25, 907–909 (2013).
[Crossref]

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett. 19, 768–770 (2007).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett. 6, 639–641 (1994).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19, 1272–1274 (2007).
[Crossref]

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150  GHz,” IEEE Photon. Technol. Lett. 10, 412–414 (1998).
[Crossref]

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11, 111–113 (1999).
[Crossref]

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12, 540–542 (2000).
[Crossref]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett. 20, 202–204 (2008).
[Crossref]

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

IEEE Trans. Microwave Theory Tech. (9)

P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Z. Sen Lin, P. M. Lane, and J. J. O’Reilly, “Assessment of the nonlinearity tolerance of different modulation schemes for millimeter-wave fiber-radio systems using MZ modulators,” IEEE Trans. Microwave Theory Tech. 45, 1403–1409 (1997).
[Crossref]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
[Crossref]

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Tech. 45, 1522–1526 (1997).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
[Crossref]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[Crossref]

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microwave Theory Tech. 58, 3279–3289 (2010).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010).
[Crossref]

IEEE Wireless Commun. (1)

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60  GHz millimeter-wave WPAN, and ZigBee,” IEEE Wireless Commun. 14, 70–78 (2007).

J. Lightwave Technol. (14)

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol. 29, 1182–1205 (2011).
[Crossref]

R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
[Crossref]

A. Campillo, E. E. Funk, D. A. Tulchinsky, J. L. Dexter, and K. J. Williams, “Phase performance of an eight-channel wavelength-division-multiplexed analog-delay line,” J. Lightwave Technol. 22, 440–447 (2004).
[Crossref]

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic radio frequency memory using frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32, 99–106 (2014).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26, 2718–2724 (2008).
[Crossref]

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

K. J. Williams and R. D. Esman, “Design considerations for high current photodetectors,” J. Lightwave Technol. 17, 1443–1454 (1999).
[Crossref]

M. Dentan and B. D. de Cremoux, “Numerical simulation of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8, 1137–1144 (1990).
[Crossref]

H. Ito, H. Fushimi, Y. Muramoto, T. Furuta, and T. Ishibashi, “High-power photonic microwave generation at K- and Ka-bands using a uni-traveling-carrier photodiode,” J. Lightwave Technol. 20, 1500–1505 (2002).
[Crossref]

X. Xie, K. Li, Q. Zhou, A. Beling, and J. C. Campbell, “High-gain, low-noise-figure, and high-linearity analog photonic link based on a high-performance photodetector,” J. Lightwave Technol. 32, 3585–3590 (2014).

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Linearity of modified uni-traveling carrier photodiodes,” J. Lightwave Technol. 26, 2373–2378 (2008).
[Crossref]

H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization of high-linearity modified uni-traveling carrier photodiodes using three-tone and bias modulation techniques,” J. Lightwave Technol. 28, 2445–2455 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterization and modeling nonlinear intermodulation distortions in uni-traveling carrier photodiodes,” J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Jpn. J. Appl. Phys. (2)

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys. 45, 3475–3478 (2006).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys. 36, 6263–6268 (1997).
[Crossref]

Nat. Photonics (1)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

Opt. Express (6)

Opt. Fiber Telecommun. (1)

M. R. Phillips and T. E. Darcie, “Lightwave analog video transmission,” Opt. Fiber Telecommun. IIIA, 523–559 (1997).
[Crossref]

Opt. Lett. (2)

Optica (1)

Proc. SPIE (3)

H. Ito and T. Nagatsuma, “High-speed and high-output-power unitraveling-carrier photodiodes,” Proc. SPIE 5246, 465–479 (2003).
[Crossref]

R. Y. Loo, G. L. Tangonan, H. W. Yen, V. L. Jones, W. W. Ng, J. B. Lewis, and S. Livingston, “Photonics for phased-array antennas,” Proc. SPIE 2844, 234–240 (1996).

H. Kiuchi, M. Saito, and S. Iguchi, “Photonic local oscillator technics for large-scale interferometers,” Proc. SPIE 8444, 84442O (2012).
[Crossref]

Other (17)

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer, 2001), Vol. 81.

S. A. Pappert, R. Helkey, and R. T. Logan, “Photonic link techniques for microwave frequency conversion,” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed. (Cambridge University, 2002), pp. 293–333.

B. Shillue, “Atacama large millimeter array photonic local oscillator: femtosecond-level synchronization for radio astronomy,” in IEEE International Frequency Control Symposium, Newport Beach, California, 2010, pp. 569–571.

V. J. Urick, J. D. McKinney, and K. J. Williams, Fundamentals of Microwave Photonics, K. Chang, ed., Wiley Series in Microwave and Optical Engineering (Wiley, 2015), Chap. 10, pp. 383–427.

“Amendment of Parts 2, 15 and 97 of the Comission’s Rules to Permit Use of Radio Frequencies above 40  GHz For new Radio Applications,” Federal Communications Commission (1995).

B. Wilson, Z. Ghassemloooy, and I. Darwazeh, Analogue Optical Fibre Communications (Institution of Electrical Engineers, 1995), Vol. 32.

E. W. Jacobs, J. S. Rodgers, D. C. Evans, T. E. Weiner, and C. Lin, “Considerations for application of RF-over-fiber to navy systems,” in Avionics, Fiber-Optics and Photonics Technology Conference, October2, 2007, pp. 3–4.

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics and Optoelectronics, OSA Technical Digest (Optical Society of America, 1997), pp. 83–87.

A. Beling, A. S. Cross, Q. Zhou, Y. Fu, and J. C. Campbell, “High-power flip-chip balanced photodetector with >40  GHz bandwidth,” in Photonics Conference (IEEE, 2013), pp. 352–353.

Q. Zhou, A. S. Cross, F. Yang, A. Beling, and J. C. Campbell, “Development of narrowband modified uni-travelling-carrier photodiodes with high power efficiency,” in Avionics, Fiber-Optics and Photonics Conference, San Diego, California, 2013, pp. 65–66.

Q. Li, K. Li, X. Xie, Y. Fu, Z. Yang, Y. Shen, Y. Wang, A. Beling, and J. C. Campbell, “High-power flip-chip bonded photodiode with 110  GHz bandwidth,” in International Conference on Photonics, October4, 2015, pp. 1–2.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. C. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12  dBm optical output power at 40  GHz,” in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. 3.

E. I. Ackerman, G. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” IEEE/MTT-S International Microwave Symposium, June3, 2007, pp. 51–54.

Z. Yang, X. Xie, Q. Li, J. C. Campbell, and A. Beling, “20  GHz analog photonic link with 16  dB gain based on a high-power balanced photodiode,” in 6th International Conference on Photonics, October4, 2015, pp. 1–2.

M. N. Draa, J. Bloch, W. S. Chang, P. K. L. Yu, D. C. Scott, S. B. Chen, N. Chen, and K. J. Williams, “Voltage-dependent nonlinearities in uni-traveling carrier directional coupled photodiodes,” in Topical Meeting on Microwave Photonics, October5, 2010, pp. 15–18.

K. J. Williams, D. A. Tulchinsky, and A. Hastings, “High-power and high-linearity photodiodes,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, California, 2008, pp. 290–291.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40  dBm OIP3 for up to 80  mA of photocurrent,” in Device Research Conference (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1. Modified charge-compensated uni-traveling carrier (MUTC) photodiode with cliff layer.
Fig. 2.
Fig. 2. InGaAs–InP (a) MUTC-LF and (b) MUTC-HF photodiode structure.
Fig. 3.
Fig. 3. Schematic cross-sectional view of a photodiode flip-chip bonded on submount [56].
Fig. 4.
Fig. 4. Illumination configuration and summary of bandwidth, saturation current, and RF output power for various photodiode diameters.
Fig. 5.
Fig. 5. Power density at failure versus diameter of CC-MUTC photodiodes. The optica-3-3-328-i001 data symbols represent photodiodes that are not flip-chip bonded. Heat is dissipated through the InP substrate. The optica-3-3-328-i002, optica-3-3-328-i003, and optica-3-3-328-i004 data points denote devices flip-chip bonded on Si, AlN, and diamond, respectively.
Fig. 6.
Fig. 6. RF output power versus frequency.
Fig. 7.
Fig. 7. Frequency responses of a 5-μm-diameter MUTC PD (the solid lines are polynomial fitting curves).
Fig. 8.
Fig. 8. Measured and simulated (a) return loss, S 11 , versus frequency and (b) relative signal intensity versus angle (at 50 GHz) for the patch antenna [62].
Fig. 9.
Fig. 9. Superimposed photo of a segment of the MUTC chip (dashed line) with four diodes (PD1–PD4) and the AlN submount with coplanar transmission line [53].
Fig. 10.
Fig. 10. Cross section of MUTC photodiode on SOI. Doping concentrations in cm 3 [63].
Fig. 11.
Fig. 11. Output RF power of waveguide photodiodes versus modulation frequency at 1.55 μm wavelength.
Fig. 12.
Fig. 12. Experimental setup for generation of high-power optical pulsed microwave signals.
Fig. 13.
Fig. 13. (a) Peak power of 1 GHz pulse signal and (b) 10 GHz pulse signal at different photocurrents and bias voltages [69].
Fig. 14.
Fig. 14. (a) Schematic of fundamentals and IMD3. (b) Definition of OIP3.
Fig. 15.
Fig. 15. OIP3 versus frequency for a conventional charge-compensated MUTC and an HD-MUTC. The solid line is the calculated variation for the voltage dependence of the capacitance C(V), and the dashed line includes the current-dependent capacitance C(I).
Fig. 16.
Fig. 16. Dependence of OIP3 on DC photocurrent and bias voltage.
Fig. 17.
Fig. 17. Cross section of the graded-bandgap absorber MUTC.
Fig. 18.
Fig. 18. (a) OIP2 and (b) OIP3 of a 40-μm-diameter graded-bandgap absorber MUTC photodiode at 300 MHz at 4 to 7    V reverse bias voltage.
Fig. 19.
Fig. 19. (a) Analog photonic link experimental setup. (b) Measured gain, noise figure, and SFDR [86].
Fig. 20.
Fig. 20. (a) Balanced analog photonic link. ECL, external cavity laser; PC, polarization controller; VOA, variable optical attenuator; OTF, optical tunable filter; ODL, optical delay line; HP BPD, high-power balanced photodiode; ESA, electrical spectrum analyzer. (b) Link gain and noise figure measured at 20 GHz versus average photocurrent per photodiode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ERP = P r G r L = P t + G t ,
OIP 3 = P f + 1 2 ( P f P IMD 3 )

Metrics